forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils4e.py
807 lines (558 loc) · 22.5 KB
/
utils4e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
"""Provides some utilities widely used by other modules"""
import bisect
import collections
import collections.abc
import functools
import heapq
import os.path
import random
from itertools import chain, combinations
from statistics import mean
import numpy as np
# part1. General data structures and their functions
# ______________________________________________________________________________
# Queues: Stack, FIFOQueue, PriorityQueue
# Stack and FIFOQueue are implemented as list and collection.deque
# PriorityQueue is implemented here
class PriorityQueue:
"""A Queue in which the minimum (or maximum) element (as determined by f and order) is returned first.
If order is 'min', the item with minimum f(x) is
returned first; if order is 'max', then it is the item with maximum f(x).
Also supports dict-like lookup."""
def __init__(self, order='min', f=lambda x: x):
self.heap = []
if order == 'min':
self.f = f
elif order == 'max': # now item with max f(x)
self.f = lambda x: -f(x) # will be popped first
else:
raise ValueError("Order must be either 'min' or 'max'.")
def append(self, item):
"""Insert item at its correct position."""
heapq.heappush(self.heap, (self.f(item), item))
def extend(self, items):
"""Insert each item in items at its correct position."""
for item in items:
self.append(item)
def pop(self):
"""Pop and return the item (with min or max f(x) value)
depending on the order."""
if self.heap:
return heapq.heappop(self.heap)[1]
else:
raise Exception('Trying to pop from empty PriorityQueue.')
def __len__(self):
"""Return current capacity of PriorityQueue."""
return len(self.heap)
def __contains__(self, key):
"""Return True if the key is in PriorityQueue."""
return any([item == key for _, item in self.heap])
def __getitem__(self, key):
"""Returns the first value associated with key in PriorityQueue.
Raises KeyError if key is not present."""
for value, item in self.heap:
if item == key:
return value
raise KeyError(str(key) + " is not in the priority queue")
def __delitem__(self, key):
"""Delete the first occurrence of key."""
try:
del self.heap[[item == key for _, item in self.heap].index(True)]
except ValueError:
raise KeyError(str(key) + " is not in the priority queue")
heapq.heapify(self.heap)
# ______________________________________________________________________________
# Functions on Sequences and Iterables
def sequence(iterable):
"""Converts iterable to sequence, if it is not already one."""
return (iterable if isinstance(iterable, collections.abc.Sequence)
else tuple([iterable]))
def remove_all(item, seq):
"""Return a copy of seq (or string) with all occurrences of item removed."""
if isinstance(seq, str):
return seq.replace(item, '')
elif isinstance(seq, set):
rest = seq.copy()
rest.remove(item)
return rest
else:
return [x for x in seq if x != item]
def unique(seq):
"""Remove duplicate elements from seq. Assumes hashable elements."""
return list(set(seq))
def count(seq):
"""Count the number of items in sequence that are interpreted as true."""
return sum(map(bool, seq))
def multimap(items):
"""Given (key, val) pairs, return {key: [val, ....], ...}."""
result = collections.defaultdict(list)
for (key, val) in items:
result[key].append(val)
return dict(result)
def multimap_items(mmap):
"""Yield all (key, val) pairs stored in the multimap."""
for (key, vals) in mmap.items():
for val in vals:
yield key, val
def product(numbers):
"""Return the product of the numbers, e.g. product([2, 3, 10]) == 60"""
result = 1
for x in numbers:
result *= x
return result
def first(iterable, default=None):
"""Return the first element of an iterable; or default."""
return next(iter(iterable), default)
def is_in(elt, seq):
"""Similar to (elt in seq), but compares with 'is', not '=='."""
return any(x is elt for x in seq)
def mode(data):
"""Return the most common data item. If there are ties, return any one of them."""
[(item, count)] = collections.Counter(data).most_common(1)
return item
def power_set(iterable):
"""power_set([1,2,3]) --> (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"""
s = list(iterable)
return list(chain.from_iterable(combinations(s, r) for r in range(len(s) + 1)))[1:]
def extend(s, var, val):
"""Copy dict s and extend it by setting var to val; return copy."""
return {**s, var: val}
def flatten(seqs):
return sum(seqs, [])
# ______________________________________________________________________________
# argmin and argmax
identity = lambda x: x
def argmin_random_tie(seq, key=identity):
"""Return a minimum element of seq; break ties at random."""
return min(shuffled(seq), key=key)
def argmax_random_tie(seq, key=identity):
"""Return an element with highest fn(seq[i]) score; break ties at random."""
return max(shuffled(seq), key=key)
def shuffled(iterable):
"""Randomly shuffle a copy of iterable."""
items = list(iterable)
random.shuffle(items)
return items
# part2. Mathematical and Statistical util functions
# ______________________________________________________________________________
def histogram(values, mode=0, bin_function=None):
"""Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.
If bin_function is given, map it over values first."""
if bin_function:
values = map(bin_function, values)
bins = {}
for val in values:
bins[val] = bins.get(val, 0) + 1
if mode:
return sorted(list(bins.items()), key=lambda x: (x[1], x[0]), reverse=True)
else:
return sorted(bins.items())
def element_wise_product(x, y):
if hasattr(x, '__iter__') and hasattr(y, '__iter__'):
assert len(x) == len(y)
return [element_wise_product(_x, _y) for _x, _y in zip(x, y)]
elif hasattr(x, '__iter__') == hasattr(y, '__iter__'):
return x * y
else:
raise Exception('Inputs must be in the same size!')
def vector_add(a, b):
"""Component-wise addition of two vectors."""
if not (a and b):
return a or b
if hasattr(a, '__iter__') and hasattr(b, '__iter__'):
assert len(a) == len(b)
return list(map(vector_add, a, b))
else:
try:
return a + b
except TypeError:
raise Exception('Inputs must be in the same size!')
def scalar_vector_product(x, y):
"""Return vector as a product of a scalar and a vector recursively."""
return [scalar_vector_product(x, _y) for _y in y] if hasattr(y, '__iter__') else x * y
def map_vector(f, x):
"""Apply function f to iterable x."""
return [map_vector(f, _x) for _x in x] if hasattr(x, '__iter__') else list(map(f, [x]))[0]
def probability(p):
"""Return true with probability p."""
return p > random.uniform(0.0, 1.0)
def weighted_sample_with_replacement(n, seq, weights):
"""Pick n samples from seq at random, with replacement, with the
probability of each element in proportion to its corresponding
weight."""
sample = weighted_sampler(seq, weights)
return [sample() for _ in range(n)]
def weighted_sampler(seq, weights):
"""Return a random-sample function that picks from seq weighted by weights."""
totals = []
for w in weights:
totals.append(w + totals[-1] if totals else w)
return lambda: seq[bisect.bisect(totals, random.uniform(0, totals[-1]))]
def weighted_choice(choices):
"""A weighted version of random.choice"""
# NOTE: Should be replaced by random.choices if we port to Python 3.6
total = sum(w for _, w in choices)
r = random.uniform(0, total)
upto = 0
for c, w in choices:
if upto + w >= r:
return c, w
upto += w
def rounder(numbers, d=4):
"""Round a single number, or sequence of numbers, to d decimal places."""
if isinstance(numbers, (int, float)):
return round(numbers, d)
else:
constructor = type(numbers) # Can be list, set, tuple, etc.
return constructor(rounder(n, d) for n in numbers)
def num_or_str(x): # TODO: rename as `atom`
"""The argument is a string; convert to a number if
possible, or strip it."""
try:
return int(x)
except ValueError:
try:
return float(x)
except ValueError:
return str(x).strip()
def euclidean_distance(x, y):
return np.sqrt(sum((_x - _y) ** 2 for _x, _y in zip(x, y)))
def manhattan_distance(x, y):
return sum(abs(_x - _y) for _x, _y in zip(x, y))
def hamming_distance(x, y):
return sum(_x != _y for _x, _y in zip(x, y))
def rms_error(x, y):
return np.sqrt(ms_error(x, y))
def ms_error(x, y):
return mean((x - y) ** 2 for x, y in zip(x, y))
def mean_error(x, y):
return mean(abs(x - y) for x, y in zip(x, y))
def mean_boolean_error(x, y):
return mean(_x != _y for _x, _y in zip(x, y))
# part3. Neural network util functions
# ______________________________________________________________________________
def cross_entropy_loss(x, y):
"""Cross entropy loss function. x and y are 1D iterable objects."""
return (-1.0 / len(x)) * sum(x * np.log(_y) + (1 - _x) * np.log(1 - _y) for _x, _y in zip(x, y))
def mean_squared_error_loss(x, y):
"""Min square loss function. x and y are 1D iterable objects."""
return (1.0 / len(x)) * sum((_x - _y) ** 2 for _x, _y in zip(x, y))
def normalize(dist):
"""Multiply each number by a constant such that the sum is 1.0"""
if isinstance(dist, dict):
total = sum(dist.values())
for key in dist:
dist[key] = dist[key] / total
assert 0 <= dist[key] <= 1 # probabilities must be between 0 and 1
return dist
total = sum(dist)
return [(n / total) for n in dist]
def random_weights(min_value, max_value, num_weights):
return [random.uniform(min_value, max_value) for _ in range(num_weights)]
def conv1D(x, k):
"""1D convolution. x: input vector; K: kernel vector."""
return np.convolve(x, k, mode='same')
def gaussian_kernel(size=3):
return [gaussian((size - 1) / 2, 0.1, x) for x in range(size)]
def gaussian_kernel_1D(size=3, sigma=0.5):
return [gaussian((size - 1) / 2, sigma, x) for x in range(size)]
def gaussian_kernel_2D(size=3, sigma=0.5):
x, y = np.mgrid[-size // 2 + 1:size // 2 + 1, -size // 2 + 1:size // 2 + 1]
g = np.exp(-((x ** 2 + y ** 2) / (2.0 * sigma ** 2)))
return g / g.sum()
def step(x):
"""Return activation value of x with sign function."""
return 1 if x >= 0 else 0
def gaussian(mean, st_dev, x):
"""Given the mean and standard deviation of a distribution, it returns the probability of x."""
return 1 / (np.sqrt(2 * np.pi) * st_dev) * np.exp(-0.5 * (float(x - mean) / st_dev) ** 2)
def linear_kernel(x, y=None):
if y is None:
y = x
return np.dot(x, y.T)
def polynomial_kernel(x, y=None, degree=2.0):
if y is None:
y = x
return (1.0 + np.dot(x, y.T)) ** degree
def rbf_kernel(x, y=None, gamma=None):
"""Radial-basis function kernel (aka squared-exponential kernel)."""
if y is None:
y = x
if gamma is None:
gamma = 1.0 / x.shape[1] # 1.0 / n_features
return np.exp(-gamma * (-2.0 * np.dot(x, y.T) +
np.sum(x * x, axis=1).reshape((-1, 1)) + np.sum(y * y, axis=1).reshape((1, -1))))
# part4. Self defined data structures
# ______________________________________________________________________________
# Grid Functions
orientations = EAST, NORTH, WEST, SOUTH = [(1, 0), (0, 1), (-1, 0), (0, -1)]
turns = LEFT, RIGHT = (+1, -1)
def turn_heading(heading, inc, headings=orientations):
return headings[(headings.index(heading) + inc) % len(headings)]
def turn_right(heading):
return turn_heading(heading, RIGHT)
def turn_left(heading):
return turn_heading(heading, LEFT)
def distance(a, b):
"""The distance between two (x, y) points."""
xA, yA = a
xB, yB = b
return np.hypot((xA - xB), (yA - yB))
def distance_squared(a, b):
"""The square of the distance between two (x, y) points."""
xA, yA = a
xB, yB = b
return (xA - xB) ** 2 + (yA - yB) ** 2
# ______________________________________________________________________________
# Misc Functions
class injection:
"""Dependency injection of temporary values for global functions/classes/etc.
E.g., `with injection(DataBase=MockDataBase): ...`"""
def __init__(self, **kwds):
self.new = kwds
def __enter__(self):
self.old = {v: globals()[v] for v in self.new}
globals().update(self.new)
def __exit__(self, type, value, traceback):
globals().update(self.old)
def memoize(fn, slot=None, maxsize=32):
"""Memoize fn: make it remember the computed value for any argument list.
If slot is specified, store result in that slot of first argument.
If slot is false, use lru_cache for caching the values."""
if slot:
def memoized_fn(obj, *args):
if hasattr(obj, slot):
return getattr(obj, slot)
else:
val = fn(obj, *args)
setattr(obj, slot, val)
return val
else:
@functools.lru_cache(maxsize=maxsize)
def memoized_fn(*args):
return fn(*args)
return memoized_fn
def name(obj):
"""Try to find some reasonable name for the object."""
return (getattr(obj, 'name', 0) or getattr(obj, '__name__', 0) or
getattr(getattr(obj, '__class__', 0), '__name__', 0) or
str(obj))
def isnumber(x):
"""Is x a number?"""
return hasattr(x, '__int__')
def issequence(x):
"""Is x a sequence?"""
return isinstance(x, collections.abc.Sequence)
def print_table(table, header=None, sep=' ', numfmt='{}'):
"""Print a list of lists as a table, so that columns line up nicely.
header, if specified, will be printed as the first row.
numfmt is the format for all numbers; you might want e.g. '{:.2f}'.
(If you want different formats in different columns,
don't use print_table.) sep is the separator between columns."""
justs = ['rjust' if isnumber(x) else 'ljust' for x in table[0]]
if header:
table.insert(0, header)
table = [[numfmt.format(x) if isnumber(x) else x for x in row]
for row in table]
sizes = list(
map(lambda seq: max(map(len, seq)),
list(zip(*[map(str, row) for row in table]))))
for row in table:
print(sep.join(getattr(
str(x), j)(size) for (j, size, x) in zip(justs, sizes, row)))
def open_data(name, mode='r'):
aima_root = os.path.dirname(__file__)
aima_file = os.path.join(aima_root, *['aima-data', name])
return open(aima_file, mode=mode)
def failure_test(algorithm, tests):
"""Grades the given algorithm based on how many tests it passes.
Most algorithms have arbitrary output on correct execution, which is difficult
to check for correctness. On the other hand, a lot of algorithms output something
particular on fail (for example, False, or None).
tests is a list with each element in the form: (values, failure_output)."""
return mean(int(algorithm(x) != y) for x, y in tests)
# ______________________________________________________________________________
# Expressions
# See https://docs.python.org/3/reference/expressions.html#operator-precedence
# See https://docs.python.org/3/reference/datamodel.html#special-method-names
class Expr:
"""A mathematical expression with an operator and 0 or more arguments.
op is a str like '+' or 'sin'; args are Expressions.
Expr('x') or Symbol('x') creates a symbol (a nullary Expr).
Expr('-', x) creates a unary; Expr('+', x, 1) creates a binary."""
def __init__(self, op, *args):
self.op = str(op)
self.args = args
# Operator overloads
def __neg__(self):
return Expr('-', self)
def __pos__(self):
return Expr('+', self)
def __invert__(self):
return Expr('~', self)
def __add__(self, rhs):
return Expr('+', self, rhs)
def __sub__(self, rhs):
return Expr('-', self, rhs)
def __mul__(self, rhs):
return Expr('*', self, rhs)
def __pow__(self, rhs):
return Expr('**', self, rhs)
def __mod__(self, rhs):
return Expr('%', self, rhs)
def __and__(self, rhs):
return Expr('&', self, rhs)
def __xor__(self, rhs):
return Expr('^', self, rhs)
def __rshift__(self, rhs):
return Expr('>>', self, rhs)
def __lshift__(self, rhs):
return Expr('<<', self, rhs)
def __truediv__(self, rhs):
return Expr('/', self, rhs)
def __floordiv__(self, rhs):
return Expr('//', self, rhs)
def __matmul__(self, rhs):
return Expr('@', self, rhs)
def __or__(self, rhs):
"""Allow both P | Q, and P |'==>'| Q."""
if isinstance(rhs, Expression):
return Expr('|', self, rhs)
else:
return PartialExpr(rhs, self)
# Reverse operator overloads
def __radd__(self, lhs):
return Expr('+', lhs, self)
def __rsub__(self, lhs):
return Expr('-', lhs, self)
def __rmul__(self, lhs):
return Expr('*', lhs, self)
def __rdiv__(self, lhs):
return Expr('/', lhs, self)
def __rpow__(self, lhs):
return Expr('**', lhs, self)
def __rmod__(self, lhs):
return Expr('%', lhs, self)
def __rand__(self, lhs):
return Expr('&', lhs, self)
def __rxor__(self, lhs):
return Expr('^', lhs, self)
def __ror__(self, lhs):
return Expr('|', lhs, self)
def __rrshift__(self, lhs):
return Expr('>>', lhs, self)
def __rlshift__(self, lhs):
return Expr('<<', lhs, self)
def __rtruediv__(self, lhs):
return Expr('/', lhs, self)
def __rfloordiv__(self, lhs):
return Expr('//', lhs, self)
def __rmatmul__(self, lhs):
return Expr('@', lhs, self)
def __call__(self, *args):
"""Call: if 'f' is a Symbol, then f(0) == Expr('f', 0)."""
if self.args:
raise ValueError('Can only do a call for a Symbol, not an Expr')
else:
return Expr(self.op, *args)
# Equality and repr
def __eq__(self, other):
"""'x == y' evaluates to True or False; does not build an Expr."""
return isinstance(other, Expr) and self.op == other.op and self.args == other.args
def __lt__(self, other):
return isinstance(other, Expr) and str(self) < str(other)
def __hash__(self):
return hash(self.op) ^ hash(self.args)
def __repr__(self):
op = self.op
args = [str(arg) for arg in self.args]
if op.isidentifier(): # f(x) or f(x, y)
return '{}({})'.format(op, ', '.join(args)) if args else op
elif len(args) == 1: # -x or -(x + 1)
return op + args[0]
else: # (x - y)
opp = (' ' + op + ' ')
return '(' + opp.join(args) + ')'
# An 'Expression' is either an Expr or a Number.
# Symbol is not an explicit type; it is any Expr with 0 args.
Number = (int, float, complex)
Expression = (Expr, Number)
def Symbol(name):
"""A Symbol is just an Expr with no args."""
return Expr(name)
def symbols(names):
"""Return a tuple of Symbols; names is a comma/whitespace delimited str."""
return tuple(Symbol(name) for name in names.replace(',', ' ').split())
def subexpressions(x):
"""Yield the subexpressions of an Expression (including x itself)."""
yield x
if isinstance(x, Expr):
for arg in x.args:
yield from subexpressions(arg)
def arity(expression):
"""The number of sub-expressions in this expression."""
if isinstance(expression, Expr):
return len(expression.args)
else: # expression is a number
return 0
# For operators that are not defined in Python, we allow new InfixOps:
class PartialExpr:
"""Given 'P |'==>'| Q, first form PartialExpr('==>', P), then combine with Q."""
def __init__(self, op, lhs):
self.op, self.lhs = op, lhs
def __or__(self, rhs):
return Expr(self.op, self.lhs, rhs)
def __repr__(self):
return "PartialExpr('{}', {})".format(self.op, self.lhs)
def expr(x):
"""Shortcut to create an Expression. x is a str in which:
- identifiers are automatically defined as Symbols.
- ==> is treated as an infix |'==>'|, as are <== and <=>.
If x is already an Expression, it is returned unchanged. Example:
>>> expr('P & Q ==> Q')
((P & Q) ==> Q)
"""
if isinstance(x, str):
return eval(expr_handle_infix_ops(x), defaultkeydict(Symbol))
else:
return x
infix_ops = '==> <== <=>'.split()
def expr_handle_infix_ops(x):
"""Given a str, return a new str with ==> replaced by |'==>'|, etc.
>>> expr_handle_infix_ops('P ==> Q')
"P |'==>'| Q"
"""
for op in infix_ops:
x = x.replace(op, '|' + repr(op) + '|')
return x
class defaultkeydict(collections.defaultdict):
"""Like defaultdict, but the default_factory is a function of the key.
>>> d = defaultkeydict(len); d['four']
4
"""
def __missing__(self, key):
self[key] = result = self.default_factory(key)
return result
class hashabledict(dict):
"""Allows hashing by representing a dictionary as tuple of key:value pairs.
May cause problems as the hash value may change during runtime."""
def __hash__(self):
return 1
# ______________________________________________________________________________
# Monte Carlo tree node and ucb function
class MCT_Node:
"""Node in the Monte Carlo search tree, keeps track of the children states."""
def __init__(self, parent=None, state=None, U=0, N=0):
self.__dict__.update(parent=parent, state=state, U=U, N=N)
self.children = {}
self.actions = None
def ucb(n, C=1.4):
return np.inf if n.N == 0 else n.U / n.N + C * np.sqrt(np.log(n.parent.N) / n.N)
# ______________________________________________________________________________
# Useful Shorthands
class Bool(int):
"""Just like `bool`, except values display as 'T' and 'F' instead of 'True' and 'False'."""
__str__ = __repr__ = lambda self: 'T' if self else 'F'
T = Bool(True)
F = Bool(False)