-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlightning_train.py
195 lines (175 loc) · 6.73 KB
/
lightning_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (C) 2023 Mitsubishi Electric Research Laboratories (MERL)
#
# SPDX-License-Identifier: MIT
from argparse import ArgumentParser
from pathlib import Path
from typing import Tuple, Union
import torch
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import DataLoader
from consistency import dnr_consistency
from dnr_dataset import SOURCE_NAMES, DivideAndRemaster
from mrx import MRX
from snr import snr_loss
class CocktailForkModule(LightningModule):
def __init__(self, model=None, si_loss=True, mixture_residual="pass"):
super().__init__()
if model is None:
self.model = MRX()
else:
self.model = model
self.si_loss = si_loss
self.mixture_residual = mixture_residual
def _step(self, batch, batch_idx, split):
x, y, filenames = batch
y_hat = self.model(x)
y_hat = dnr_consistency(x, y_hat, mode=self.mixture_residual)
loss = snr_loss(y_hat, y, scale_invariant=self.si_loss).mean()
self.log(f"{split}_loss", loss, on_step=True, on_epoch=True)
return loss
def training_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "train")
def validation_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "val")
def test_step(self, batch, batch_idx):
x, y, filenames = batch
y_hat = self.model(x)
y_hat = dnr_consistency(x, y_hat, mode=self.mixture_residual)
est_sisdr = -snr_loss(y_hat, y, scale_invariant=True).mean(-1).mean(0) # average of batch and channel
est_snr = -snr_loss(y_hat, y, scale_invariant=False).mean(-1).mean(0)
# expand mixture to shape of isolated sources for noisy SDR
repeat_shape = len(y.shape) * [1]
repeat_shape[1] = y.shape[1]
x = x.unsqueeze(1).repeat(repeat_shape)
noisy_sisdr = -snr_loss(x, y, scale_invariant=True).mean(-1).mean(0)
noisy_snr = -snr_loss(x, y, scale_invariant=False).mean(-1).mean(0)
result_dict = {}
for i, src in enumerate(SOURCE_NAMES):
result_dict[f"noisy_sisdr_{src}"] = noisy_sisdr[i].item()
result_dict[f"est_sisdr_{src}"] = est_sisdr[i].item()
result_dict[f"noisy_snr_{src}"] = noisy_snr[i].item()
result_dict[f"est_snr_{src}"] = est_snr[i].item()
self.log_dict(result_dict, on_epoch=True)
return est_sisdr.mean()
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.5, patience=3)
lr_scheduler_config = {"scheduler": lr_scheduler, "monitor": "val_loss", "interval": "epoch", "frequency": 1}
return [optimizer], [lr_scheduler_config]
def _get_dataloaders(
dnr_root_dir: Union[str, Path],
train_batch_size: int = 25,
train_chunk_sec: float = 9.0,
eval_batch_size: int = 5,
num_workers: int = 4,
) -> Tuple[DataLoader]:
train_dataset = DivideAndRemaster(dnr_root_dir, "tr", chunk_size_sec=train_chunk_sec, random_start=True)
train_loader = DataLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=True,
num_workers=num_workers,
drop_last=True,
)
valid_dataset = DivideAndRemaster(dnr_root_dir, "cv")
valid_loader = DataLoader(
valid_dataset,
batch_size=eval_batch_size,
num_workers=num_workers,
drop_last=False,
)
test_dataset = DivideAndRemaster(dnr_root_dir, "tt")
test_loader = DataLoader(
test_dataset,
batch_size=eval_batch_size,
num_workers=num_workers,
drop_last=False,
)
return train_loader, valid_loader, test_loader
def cli_main():
parser = ArgumentParser()
parser.add_argument("--train-batch-size", default=20, type=int)
parser.add_argument("--eval-batch-size", default=10, type=int)
parser.add_argument(
"--root-dir",
type=Path,
help="The path to the DnR directory containing ``tr`` ``cv`` and ``tt`` directories.",
)
parser.add_argument(
"--exp-dir", default=Path("./exp"), type=Path, help="The directory to save checkpoints and logs."
)
parser.add_argument(
"--chunk-size",
default=9.0,
type=float,
help="length of chunk from file for training in seconds. (default: 9.0)",
)
parser.add_argument(
"--epochs",
metavar="NUM_EPOCHS",
default=200,
type=int,
help="The number of epochs to train. (default: 200)",
)
parser.add_argument(
"--num-gpu",
default=1,
type=int,
help="The number of GPUs for training. (default: 1)",
)
parser.add_argument(
"--num-workers",
default=4,
type=int,
help="The number of workers for dataloader. (default: 4)",
)
parser.add_argument(
"--loss",
default="si_snr",
type=str,
choices=["si_snr", "snr"],
help="The loss function for network training, either snr or si_snr. (default: si_snr)",
)
parser.add_argument(
"--mixture-residual",
default="pass",
type=str,
choices=["all", "pass", "music_sfx"],
help="Whether to add the residual to estimates, 'pass' doesn't add residual, 'all' splits residual among "
"all sources, 'music_sfx' splits residual among only music and sfx sources . (default: pass)",
)
args = parser.parse_args()
si_loss = True if args.loss == "si_snr" else False
model = CocktailForkModule(si_loss=si_loss, mixture_residual=args.mixture_residual)
train_loader, valid_loader, test_loader = _get_dataloaders(
args.root_dir,
args.train_batch_size,
args.chunk_size,
args.eval_batch_size,
args.num_workers,
)
checkpoint = ModelCheckpoint(monitor="val_loss", mode="min", save_top_k=5, verbose=True)
callbacks = [checkpoint]
if args.num_gpu > 0:
devices = args.num_gpu
accelerator = "gpu"
else:
devices = "auto"
accelerator = "cpu"
trainer = Trainer(
default_root_dir=args.exp_dir,
max_epochs=args.epochs,
devices=devices,
accelerator=accelerator,
gradient_clip_val=5.0,
callbacks=callbacks,
)
trainer.fit(model, train_loader, valid_loader)
model.load_from_checkpoint(checkpoint.best_model_path)
ckpt = torch.load(checkpoint.best_model_path, map_location="cpu")
model_weights = {k.replace("model.", ""): v for k, v in ckpt["state_dict"].items()}
torch.save(model_weights, Path(checkpoint.dirpath) / "best_model.pth")
trainer.test(model, test_loader)
if __name__ == "__main__":
cli_main()