forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDCGAN.py
executable file
·171 lines (142 loc) · 5.79 KB
/
DCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: DCGAN.py
# Author: Yuxin Wu
import argparse
import glob
import numpy as np
import os
import tensorflow as tf
from tensorpack import *
from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope
from tensorpack.utils.viz import stack_patches
from GAN import GANModelDesc, GANTrainer, RandomZData
"""
1. Download the 'aligned&cropped' version of CelebA dataset
from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
2. Start training:
./DCGAN-CelebA.py --data /path/to/img_align_celeba/ --crop-size 140
Generated samples will be available through tensorboard
3. Visualize samples with an existing model:
./DCGAN-CelebA.py --load path/to/model --sample
You can also train on other images (just use any directory of jpg files in
`--data`). But you may need to change the preprocessing.
A pretrained model on CelebA is at http://models.tensorpack.com/#GAN
"""
class Model(GANModelDesc):
def __init__(self, shape, batch, z_dim):
self.shape = shape
self.batch = batch
self.zdim = z_dim
def inputs(self):
return [tf.TensorSpec((None, self.shape, self.shape, 3), tf.float32, 'input')]
def generator(self, z):
""" return an image generated from z"""
nf = 64
l = FullyConnected('fc0', z, nf * 8 * 4 * 4, activation=tf.identity)
l = tf.reshape(l, [-1, 4, 4, nf * 8])
l = BNReLU(l)
with argscope(Conv2DTranspose, activation=BNReLU, kernel_size=4, strides=2):
l = Conv2DTranspose('deconv1', l, nf * 4)
l = Conv2DTranspose('deconv2', l, nf * 2)
l = Conv2DTranspose('deconv3', l, nf)
l = Conv2DTranspose('deconv4', l, 3, activation=tf.identity)
l = tf.tanh(l, name='gen')
return l
@auto_reuse_variable_scope
def discriminator(self, imgs):
""" return a (b, 1) logits"""
nf = 64
with argscope(Conv2D, kernel_size=4, strides=2):
l = (LinearWrap(imgs)
.Conv2D('conv0', nf, activation=tf.nn.leaky_relu)
.Conv2D('conv1', nf * 2)
.BatchNorm('bn1')
.tf.nn.leaky_relu()
.Conv2D('conv2', nf * 4)
.BatchNorm('bn2')
.tf.nn.leaky_relu()
.Conv2D('conv3', nf * 8)
.BatchNorm('bn3')
.tf.nn.leaky_relu()
.FullyConnected('fct', 1)())
return l
def build_graph(self, image_pos):
image_pos = image_pos / 128.0 - 1
z = tf.random_uniform([self.batch, self.zdim], -1, 1, name='z_train')
z = tf.placeholder_with_default(z, [None, self.zdim], name='z')
with argscope([Conv2D, Conv2DTranspose, FullyConnected],
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02)):
with tf.variable_scope('gen'):
image_gen = self.generator(z)
tf.summary.image('generated-samples', image_gen, max_outputs=30)
with tf.variable_scope('discrim'):
vecpos = self.discriminator(image_pos)
vecneg = self.discriminator(image_gen)
self.build_losses(vecpos, vecneg)
self.collect_variables()
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=2e-4, trainable=False)
return tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-3)
def get_augmentors():
augs = []
if args.load_size:
augs.append(imgaug.Resize(args.load_size))
if args.crop_size:
augs.append(imgaug.CenterCrop(args.crop_size))
augs.append(imgaug.Resize(args.final_size))
return augs
def get_data():
assert args.data
imgs = glob.glob(args.data + '/*.jpg')
ds = ImageFromFile(imgs, channel=3, shuffle=True)
ds = AugmentImageComponent(ds, get_augmentors())
ds = BatchData(ds, args.batch)
ds = MultiProcessRunnerZMQ(ds, 5)
return ds
def sample(model, model_path, output_name='gen/gen'):
pred = PredictConfig(
session_init=SmartInit(model_path),
model=model,
input_names=['z'],
output_names=[output_name, 'z'])
pred = SimpleDatasetPredictor(pred, RandomZData((100, args.z_dim)))
for o in pred.get_result():
o = o[0] + 1
o = o * 128.0
o = np.clip(o, 0, 255)
o = o[:, :, :, ::-1]
stack_patches(o, nr_row=10, nr_col=10, viz=True)
def get_args(default_batch=128, default_z_dim=100):
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--sample', action='store_true', help='view generated examples')
parser.add_argument('--data', help='a jpeg directory')
parser.add_argument('--load-size', help='size to load the original images', type=int)
parser.add_argument('--crop-size', help='crop the original images', type=int)
parser.add_argument(
'--final-size', default=64, type=int,
help='resize to this shape as inputs to network')
parser.add_argument('--z-dim', help='hidden dimension', type=int, default=default_z_dim)
parser.add_argument('--batch', help='batch size', type=int, default=default_batch)
global args
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
return args
if __name__ == '__main__':
args = get_args()
M = Model(shape=args.final_size, batch=args.batch, z_dim=args.z_dim)
if args.sample:
sample(M, args.load)
else:
logger.auto_set_dir()
GANTrainer(
input=QueueInput(get_data()),
model=M).train_with_defaults(
callbacks=[ModelSaver()],
steps_per_epoch=300,
max_epoch=200,
session_init=SmartInit(args.load),
)