-
Notifications
You must be signed in to change notification settings - Fork 80
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
AttributeError: 'NoneType' object has no attribute 'get_seq_length' #6
Comments
Sorry I install transformers tip of the implementation branch, I see some commits were added that might've broken the code. Can you install this commit on same branch: e1b7c0a05ab65e4ddb62a407fe12f8ec13a916f0 @bjarnedesmetinect |
Many Thanks! That did the job, I saw it had something to do with the cache? |
Hi, I was able to install the richt commit with the following command : "pip install git+https://github.com/andimarafioti/transformers.git@e1b7c0a05ab65e4ddb62a407fe12f8ec13a916f0" Still got the "get_seq_length" problem. EDIT : SHA a72b30fe06bba77d9df4c72fcea48bbdc0d812a5 worked. (same commit but different SHA ?????) |
@bjarnedesmetinect yes it was, very sorry for the inconvenience! |
Hi,
I get this error in the training part. Is there something I am doing wrong?
Using for test purposes the same dataset!
Thanks!
AttributeError Traceback (most recent call last)
Cell In[19], line 1
----> 1 trainer.train()
File /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1948, in Trainer.train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)
1946 hf_hub_utils.enable_progress_bars()
1947 else:
-> 1948 return inner_training_loop(
1949 args=args,
1950 resume_from_checkpoint=resume_from_checkpoint,
1951 trial=trial,
1952 ignore_keys_for_eval=ignore_keys_for_eval,
1953 )
File /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:2289, in Trainer._inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)
2286 self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
2288 with self.accelerator.accumulate(model):
-> 2289 tr_loss_step = self.training_step(model, inputs)
2291 if (
2292 args.logging_nan_inf_filter
2293 and not is_torch_xla_available()
2294 and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
2295 ):
2296 # if loss is nan or inf simply add the average of previous logged losses
2297 tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)
File /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:3328, in Trainer.training_step(self, model, inputs)
3325 return loss_mb.reduce_mean().detach().to(self.args.device)
3327 with self.compute_loss_context_manager():
-> 3328 loss = self.compute_loss(model, inputs)
3330 del inputs
3331 if (
3332 self.args.torch_empty_cache_steps is not None
3333 and self.state.global_step % self.args.torch_empty_cache_steps == 0
3334 ):
File /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:3373, in Trainer.compute_loss(self, model, inputs, return_outputs)
3371 else:
3372 labels = None
-> 3373 outputs = model(**inputs)
3374 # Save past state if it exists
3375 # TODO: this needs to be fixed and made cleaner later.
3376 if self.args.past_index >= 0:
File /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py:1518, in Module._wrapped_call_impl(self, *args, **kwargs)
1516 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1517 else:
-> 1518 return self._call_impl(*args, **kwargs)
File /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py:1527, in Module._call_impl(self, *args, **kwargs)
1522 # If we don't have any hooks, we want to skip the rest of the logic in
1523 # this function, and just call forward.
1524 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1525 or _global_backward_pre_hooks or _global_backward_hooks
1526 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527 return forward_call(*args, **kwargs)
1529 try:
1530 result = None
File /usr/local/lib/python3.10/dist-packages/accelerate/utils/operations.py:819, in convert_outputs_to_fp32..forward(*args, **kwargs)
818 def forward(*args, **kwargs):
--> 819 return model_forward(*args, **kwargs)
File /usr/local/lib/python3.10/dist-packages/accelerate/utils/operations.py:807, in ConvertOutputsToFp32.call(self, *args, **kwargs)
806 def call(self, *args, **kwargs):
--> 807 return convert_to_fp32(self.model_forward(*args, **kwargs))
File /usr/local/lib/python3.10/dist-packages/torch/amp/autocast_mode.py:16, in autocast_decorator..decorate_autocast(*args, **kwargs)
13 @functools.wraps(func)
14 def decorate_autocast(*args, **kwargs):
15 with autocast_instance:
---> 16 return func(*args, **kwargs)
File /usr/local/lib/python3.10/dist-packages/accelerate/utils/operations.py:819, in convert_outputs_to_fp32..forward(*args, **kwargs)
818 def forward(*args, **kwargs):
--> 819 return model_forward(*args, **kwargs)
File /usr/local/lib/python3.10/dist-packages/accelerate/utils/operations.py:807, in ConvertOutputsToFp32.call(self, *args, **kwargs)
806 def call(self, *args, **kwargs):
--> 807 return convert_to_fp32(self.model_forward(*args, **kwargs))
File /usr/local/lib/python3.10/dist-packages/torch/amp/autocast_mode.py:16, in autocast_decorator..decorate_autocast(*args, **kwargs)
13 @functools.wraps(func)
14 def decorate_autocast(*args, **kwargs):
15 with autocast_instance:
---> 16 return func(*args, **kwargs)
File /usr/local/lib/python3.10/dist-packages/accelerate/hooks.py:169, in add_hook_to_module..new_forward(module, *args, **kwargs)
167 output = module._old_forward(*args, **kwargs)
168 else:
--> 169 output = module._old_forward(*args, **kwargs)
170 return module._hf_hook.post_forward(module, output)
File /usr/local/lib/python3.10/dist-packages/transformers/models/idefics3/modeling_idefics3.py:1145, in Idefics3ForConditionalGeneration.forward(self, input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, pixel_values, pixel_attention_mask, image_hidden_states, labels, use_cache, output_attentions, output_hidden_states, return_dict)
1142 return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1144 # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
-> 1145 outputs = self.model(
1146 input_ids=input_ids,
1147 attention_mask=attention_mask,
1148 position_ids=position_ids,
1149 past_key_values=past_key_values,
1150 inputs_embeds=inputs_embeds,
1151 pixel_values=pixel_values,
1152 pixel_attention_mask=pixel_attention_mask,
1153 image_hidden_states=image_hidden_states,
1154 use_cache=use_cache,
1155 output_attentions=output_attentions,
1156 output_hidden_states=output_hidden_states,
1157 return_dict=return_dict,
1158 )
1160 hidden_states = outputs[0]
1161 logits = self.lm_head(hidden_states)
File /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py:1518, in Module._wrapped_call_impl(self, *args, **kwargs)
1516 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1517 else:
-> 1518 return self._call_impl(*args, **kwargs)
File /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py:1527, in Module._call_impl(self, *args, **kwargs)
1522 # If we don't have any hooks, we want to skip the rest of the logic in
1523 # this function, and just call forward.
1524 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1525 or _global_backward_pre_hooks or _global_backward_hooks
1526 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527 return forward_call(*args, **kwargs)
1529 try:
1530 result = None
File /usr/local/lib/python3.10/dist-packages/accelerate/hooks.py:169, in add_hook_to_module..new_forward(module, *args, **kwargs)
167 output = module._old_forward(*args, **kwargs)
168 else:
--> 169 output = module._old_forward(*args, **kwargs)
170 return module._hf_hook.post_forward(module, output)
File /usr/local/lib/python3.10/dist-packages/transformers/models/idefics3/modeling_idefics3.py:937, in Idefics3Model.forward(self, input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, pixel_values, pixel_attention_mask, image_hidden_states, use_cache, output_attentions, output_hidden_states, return_dict)
935 past_seen_tokens = 0
936 if use_cache:
--> 937 past_seen_tokens = past_key_values.get_seq_length()
939 if inputs_embeds is not None and input_ids is None and past_seen_tokens == 0:
940 raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.")
AttributeError: 'NoneType' object has no attribute 'get_seq_length'
The text was updated successfully, but these errors were encountered: