- run prepare-dataset.ipynb.
- run prepare-bpe.ipynb.
- run prepare-t2t.ipynb.
- First 200k Trainset to train, validation and test set to test.
- Based on 20 epochs.
- Accuracy based on BLEU.
- RNN and Transformer parameters are not consistent.
For RNN,
size_layer = 512
num_layers = 2
For Transformer, we use BASE parameter from Tensor2Tensor.
Here we never tested what happened to RNN based models if we increase number of layers and size of layers same as Transformer BASE parameter.
- Batch size not consistent, most of the models used 128 batch size.
notebook | BLEU |
---|---|
1.basic-seq2seq.ipynb | 6.319555e-05 |
2.lstm-seq2seq.ipynb | 0.016924812 |
3.gru-seq2seq.ipynb | 0.0094467895 |
4.basic-seq2seq-contrib-greedy.ipynb | 0.005418866 |
5.lstm-seq2seq-contrib-greedy.ipynb | |
6.gru-seq2seq-contrib-greedy.ipynb | 0.051461186 |
7.basic-birnn-seq2seq.ipynb | 6.319555e-05 |
8.lstm-birnn-seq2seq.ipynb | 0.012854616 |
9.gru-birnn-seq2seq.ipynb | 0.0095551545 |
10.basic-birnn-seq2seq-contrib-greedy.ipynb | 0.019748569 |
11.lstm-birnn-seq2seq-contrib-greedy.ipynb | 0.052993 |
12.gru-birnn-seq2seq-contrib-greedy.ipynb | 0.047413725 |
13.basic-seq2seq-luong.ipynb | 8.97118e-05 |
14.lstm-seq2seq-luong.ipynb | 0.053475615 |
15.gru-seq2seq-luong.ipynb | 0.01888038 |
16.basic-seq2seq-bahdanau.ipynb | 0.00020161743 |
17.lstm-seq2seq-bahdanau.ipynb | 0.048261568 |
18.gru-seq2seq-bahdanau.ipynb | 0.025584696 |
19.basic-birnn-seq2seq-bahdanau.ipynb | 0.00020161743 |
20.lstm-birnn-seq2seq-bahdanau.ipynb | 0.054097746 |
21.gru-birnn-seq2seq-bahdanau.ipynb | 0.00020161743 |
22.basic-birnn-seq2seq-luong.ipynb | |
23.lstm-birnn-seq2seq-luong.ipynb | 0.05320787 |
24.gru-birnn-seq2seq-luong.ipynb | 0.027758315 |
25.lstm-seq2seq-contrib-greedy-luong.ipynb | 0.15195806 |
26.gru-seq2seq-contrib-greedy-luong.ipynb | 0.101576895 |
27.lstm-seq2seq-contrib-greedy-bahdanau.ipynb | 0.15275387 |
28.gru-seq2seq-contrib-greedy-bahdanau.ipynb | 0.13868862 |
29.lstm-seq2seq-contrib-beam-luong.ipynb | 0.17535137 |
30.gru-seq2seq-contrib-beam-luong.ipynb | 0.003980886 |
31.lstm-seq2seq-contrib-beam-bahdanau.ipynb | 0.17929372 |
32.gru-seq2seq-contrib-beam-bahdanau.ipynb | 0.1767827 |
33.lstm-birnn-seq2seq-contrib-beam-bahdanau.ipynb | 0.19480321 |
34.lstm-birnn-seq2seq-contrib-beam-luong.ipynb | 0.20042004 |
35.gru-birnn-seq2seq-contrib-beam-bahdanau.ipynb | 0.1784567 |
36.gru-birnn-seq2seq-contrib-beam-luong.ipynb | 0.0557322 |
37.lstm-birnn-seq2seq-contrib-beam-luongmonotonic.ipynb | 0.06368613 |
38.gru-birnn-seq2seq-contrib-beam-luongmonotic.ipynb | 0.06407658 |
39.lstm-birnn-seq2seq-contrib-beam-bahdanaumonotonic.ipynb | 0.17586066 |
40.gru-birnn-seq2seq-contrib-beam-bahdanaumonotic.ipynb | 0.065290846 |
41.residual-lstm-seq2seq-greedy-luong.ipynb | 0.1475228 |
42.residual-gru-seq2seq-greedy-luong.ipynb | 5.0574585e-05 |
43.residual-lstm-seq2seq-greedy-bahdanau.ipynb | 0.15493448 |
44.residual-gru-seq2seq-greedy-bahdanau.ipynb | |
45.memory-network-lstm-decoder-greedy.ipynb | |
46.google-nmt.ipynb | 0.055380445 |
47.transformer-encoder-transformer-decoder.ipynb | 0.17100729 |
48.transformer-encoder-lstm-decoder-greedy.ipynb | 0.049064703 |
49.bertmultilanguage-encoder-bertmultilanguage-decoder.ipynb | 0.37003958 |
50.bertmultilanguage-encoder-lstm-decoder.ipynb | 0.11384286 |
51.bertmultilanguage-encoder-transformer-decoder.ipynb | 0.3941662 |
52.bertenglish-encoder-transformer-decoder.ipynb | 0.23225775 |
53.transformer-t2t-2gpu.ipynb | 0.36773485 |