-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_special_tokens.py
32 lines (27 loc) · 1.37 KB
/
test_special_tokens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from pathlib import Path
import shutil
import unittest
from transformers import OpenAIGPTTokenizer, GPT2Tokenizer
from train import ATTR_TO_SPECIAL_TOKEN, SPECIAL_TOKENS
class TestSpecialTokenTreatment(unittest.TestCase):
def setUp(self):
self.save_dir = Path('utest_save_dir')
self.save_dir.mkdir(exist_ok=True)
def tearDown(self):
shutil.rmtree(self.save_dir)
def test_special_tokens_checkpoint_behavior(self):
toks = [OpenAIGPTTokenizer.from_pretrained('openai-gpt'), GPT2Tokenizer.from_pretrained('gpt2')]
for tok in toks:
self.assertEqual(len(tok.added_tokens_encoder), 0)
tok.add_special_tokens(ATTR_TO_SPECIAL_TOKEN)
self.assertEqual(len(tok.added_tokens_encoder), 5)
# Make sure we never split
self.assertEqual(len(tok.tokenize("<bos> <speaker1>")), 2)
ids = tok.convert_tokens_to_ids(SPECIAL_TOKENS)
self.assertTrue(all([x > 0 for x in ids]),
f'some tokens failed to tokenize {SPECIAL_TOKENS} -> {ids}')
# Need to mantain indices through save. (this is also tested in pytorch-transformers)
tok.save_pretrained(self.save_dir)
tok_loaded = tok.from_pretrained(str(self.save_dir))
ids2 = tok_loaded.convert_tokens_to_ids(SPECIAL_TOKENS)
self.assertListEqual(ids, ids2)