-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_eval.py
703 lines (579 loc) · 28.7 KB
/
main_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
import torch
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from torch.utils import data
from torchvision import transforms
import torch.nn.functional as F
import data.videotransforms as vT
import os
import sys
import argparse
import time
import numpy as np
import random
import pickle
from tqdm import tqdm
import json
from model.classifier import LinearClassifier
from utils.utils import AverageMeter, ProgressMeter, save_checkpoint, \
calc_topk_accuracy, Logger, neq_load_customized, adjust_learning_rate
from data.augmentation import get_train_val_augment
from data.vDataset import VideoDataset
from data.vDataLoader import get_dataloader, data_config
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='ucf101', type=str,
choices=['hmdb51', 'ucf101'])
parser.add_argument('--db_root', default='', type=str, help='root path of mp4 videos')
parser.add_argument('--setting', default='sup', type=str, choices=['ssl', 'sup'])
parser.add_argument('--task', default='lincls', type=str, choices=['lincls'])
parser.add_argument('--net', default='r3d18', type=str, choices=['s3d', 'r3d18'])
parser.add_argument('--img_dim', default=224, type=int, help='input spatial size')
parser.add_argument('--seq_len', default=64, type=int, help='sequence length')
parser.add_argument('-bsz', '--batch_size', default=32, type=int, help='batch size per gpu')
parser.add_argument('--double_sample', action='store_true') # default False
parser.add_argument('--ds', default=1, type=int, help='frame down sampling rate')
parser.add_argument('--lr', default=1e-3, type=float, help='learning rate')
parser.add_argument('--schedule', default=[60, 80], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--wd', default=1e-3, type=float, help='weight decay')
parser.add_argument('--dropout', default=0.9, type=float, help='dropout')
parser.add_argument('--warmup', default=0, type=int)
parser.add_argument('--start_epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
parser.add_argument('--ttl_epoch', default=100, type=int, help='number of total epochs to run')
parser.add_argument('--gpu', default=None, type=str)
parser.add_argument('-j', '--workers', default=8, type=int, help='number of data loading workers per gpu')
parser.add_argument('--train_what', default='', type=str)
parser.add_argument('--val_all', action='store_true')
parser.add_argument('--print_freq', default=10, type=int, help='frequency of printing output during training')
parser.add_argument('--eval_freq', default=1, type=int)
parser.add_argument('--resume', default='', type=str, help='path of model to resume')
parser.add_argument('--pretrain', default='', type=str, help='path of pretrained model')
parser.add_argument('--test', default='', type=str, help='path of model to load and pause')
parser.add_argument('--retrieval', action='store_true', help='path of model to nn retrieval')
parser.add_argument('--dirname', default=None, type=str, help='dirname for feature')
parser.add_argument('--center_crop', action='store_true')
parser.add_argument('--five_crop', action='store_true')
parser.add_argument('--ten_crop', action='store_true')
# DDP
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
args = parser.parse_args()
# use ddp mode if there are multiple gpus.
if args.gpu is None:
raise ValueError('No GPU is Available.')
args.ddp = len(args.gpu.split(',')) > 1
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
# - save folder & filename
if args.resume:
args.exp_path = os.path.dirname(os.path.dirname(args.resume))
elif args.test:
args.exp_path = os.path.dirname(os.path.dirname(args.test))
else:
args.exp_path = f'log-{args.task}/{args.net}-{args.dataset}-{args.img_dim}_{args.seq_len}_bsz{args.batch_size}'
args.exp_path += f'_pt={args.pretrain.replace("/", "-") if args.pretrain else "None"}'
args.img_path = os.path.join(args.exp_path, 'img')
args.model_path = os.path.join(args.exp_path, 'model')
if not os.path.exists(args.img_path):
os.makedirs(args.img_path)
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
return args
def main(args):
best = 0
torch.manual_seed(0)
np.random.seed(0)
random.seed(0)
data_config(args)
print(f'=> Effective BatchSize = {args.batch_size}')
# - DDP
if args.ddp:
dist.init_process_group(backend='nccl')
# - Model
if args.train_what == 'last': # for linear probe
args.final_bn = True
args.final_norm = True
args.use_dropout = False
else: # for training the entire network
args.final_bn = False
args.final_norm = False
args.use_dropout = True
if args.task == 'lincls':
model = LinearClassifier(
network=args.net,
num_class=args.num_class,
dropout=args.dropout,
use_dropout=args.use_dropout,
use_final_bn=args.final_bn,
use_l2_norm=args.final_norm)
else:
raise NotImplementedError
model.cuda()
# - optimizer
if args.train_what == 'last':
print('=> [optimizer] only train last layer')
params = []
for name, param in model.named_parameters():
if 'backbone' in name:
param.requires_grad = False
else:
params.append({'params': param})
elif args.train_what == 'ft':
print('=> [optimizer] finetune backbone with smaller lr')
params = []
for name, param in model.named_parameters():
if 'backbone' in name:
params.append({'params': param, 'lr': args.lr / 10})
else:
params.append({'params': param})
else: # train all
params = []
print('=> [optimizer] train all layer')
for name, param in model.named_parameters():
params.append({'params': param})
if args.train_what == 'last':
print('\n===========Check Grad============')
for name, param in model.named_parameters():
if param.requires_grad:
print(name, param.requires_grad)
print('=================================\n')
optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.wd)
# - scheduler
if args.train_what == 'last':
args.ttl_epoch = 150
args.dropout = 0.5
if args.dataset in ['hmdb51']:
args.schedule = [40, 60]
elif args.dataset in ['ucf101']:
args.schedule = [60, 80]
else:
raise NotImplementedError
else:
args.ttl_epoch = 400
if args.dataset in ['hmdb51']:
args.schedule = [100, 150]
elif args.dataset in ['ucf101']:
args.schedule = [130, 180]
else:
raise NotImplementedError
print('=> Using scheduler at {} epochs'.format(args.schedule))
if args.ddp:
model = DDP(model, find_unused_parameters=True)
model_without_ddp = model.module
else:
model_without_ddp = model
# ================ test: higher priority ====================
if args.test:
for name, param in model.named_parameters():
param.requires_grad = False # freeze model
if os.path.isfile(args.test):
print("=> loading testing checkpoint '{}'".format(args.test))
checkpoint = torch.load(args.test, map_location=torch.device('cpu'))
epoch = checkpoint['epoch']
state_dict = checkpoint['state_dict']
new_dict = {}
for k, v in state_dict.items():
if '_k' in k: continue
k = k.replace('module.base_q.', 'backbone.')
k = k.replace('module.encoder_q.0.', 'backbone.')
k = k.replace('base_q.', 'backbone.')
k = k.replace('encoder_q.0.', 'backbone.')
new_dict[k] = v
state_dict = new_dict
try:
model_without_ddp.load_state_dict(state_dict)
except:
neq_load_customized(model_without_ddp, state_dict, verbose=True)
else:
print("[Warning] no checkpoint found at '{}'".format(args.test))
epoch = 0
print("[Warning] if test random init weights, press c to continue")
import ipdb
ipdb.set_trace()
torch.cuda.empty_cache()
if args.retrieval:
args.dirname = '_'.join(args.test.split('/')[-1].split('_')[:-1]) + '_feature'
if not os.path.exists(os.path.join(os.path.dirname(args.test), args.dirname)):
os.makedirs(os.path.join(os.path.dirname(args.test), args.dirname))
args.logger = Logger(path=os.path.join(os.path.dirname(args.test), args.dirname))
args.logger.log('args=\n\t\t' + '\n\t\t'.join(['%s:%s' % (str(k), str(v)) for k, v in vars(args).items()]))
test_retrieval(args, model)
print(f'Save feature to dirname: {args.dirname}')
elif args.center_crop or args.five_crop or args.ten_crop:
args.logger = Logger(path=os.path.dirname(args.test))
args.logger.log('args=\n\t\t' + '\n\t\t'.join(['%s:%s' % (str(k), str(v)) for k, v in vars(args).items()]))
_, val_transform = get_train_val_augment(args)
val_set = VideoDataset(args.val_list, args.video_path, double_sample=False,
transform=val_transform, mode='test',
seq_len=args.seq_len, ds=args.ds,
return_vpath=True,
return_label=True)
test_10crop(args, model, epoch, val_set)
else:
raise NotImplementedError
sys.exit(0)
# - Data
train_transform, val_transform = get_train_val_augment(args)
train_loader, train_sampler, val_loader = get_dataloader(args, train_transform, val_transform)
args.logger = Logger(path=args.img_path)
args.logger.log('args=\n\t\t' + '\n\t\t'.join(['%s:%s' % (str(k), str(v)) for k, v in vars(args).items()]))
args.logger.log('===================================')
# ================= Restart Training ==================
if args.resume:
if os.path.isfile(args.resume):
checkpoint = torch.load(args.resume, map_location='cpu')
args.start_epoch = checkpoint['epoch'] + 1
best = checkpoint['best']
state_dict = checkpoint['state_dict']
try:
model_without_ddp.load_state_dict(state_dict)
except:
args.logger.log('[WARNING] resuming training with different weights')
neq_load_customized(model_without_ddp, state_dict, verbose=True)
args.logger.log("=> load resumed checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
try:
optimizer.load_state_dict(checkpoint['optimizer'])
except:
args.logger.log('[WARNING] failed to load optimizer state, initialize optimizer')
else:
args.logger.log("[Warning] no checkpoint found at '{}', use random init".format(args.resume))
elif args.pretrain:
if os.path.isfile(args.pretrain):
checkpoint = torch.load(args.pretrain, map_location='cpu')
state_dict = checkpoint['state_dict']
new_dict = {}
for k, v in state_dict.items():
if '_k' in k: continue
if 'fc' in k: continue
k = k.replace('module.base_q.', 'backbone.')
k = k.replace('module.encoder_q.0.', 'backbone.')
k = k.replace('base_q.', 'backbone.')
k = k.replace('encoder_q.0.', 'backbone.')
k = k.replace('module.', 'backbone.')
new_dict[k] = v
state_dict = new_dict
try:
model_without_ddp.load_state_dict(state_dict)
except:
neq_load_customized(model_without_ddp, state_dict, verbose=True)
args.logger.log("=> loaded pretrained checkpoint '{}' (epoch {})".format(args.pretrain, checkpoint['epoch']))
else:
args.logger.log("[Warning] no checkpoint found at '{}', use random init".format(args.pretrain))
raise NotImplementedError
else:
args.logger.log("=> train from scratch")
if args.val_all: # when do evaluation, no train
_, val_acc = validate(args, args.start_epoch, model, val_loader)
exit(0)
# main loop
for epoch in range(args.start_epoch, args.ttl_epoch):
if args.ddp: train_sampler.set_epoch(epoch)
np.random.seed(epoch)
random.seed(epoch)
adjust_learning_rate(optimizer, epoch, args)
train(args, epoch, model, train_loader, optimizer)
if epoch % args.eval_freq == 0:
_, val_acc = validate(args, epoch, model, val_loader)
# save check_point
is_best = val_acc > best
best = max(val_acc, best)
state_dict = model_without_ddp.state_dict()
save_dict = {
'epoch': epoch,
'state_dict': state_dict,
'best': best,
'optimizer': optimizer.state_dict()}
save_checkpoint(save_dict, is_best, 1,
filename=os.path.join(args.model_path, 'epoch%d.pth.tar' % epoch),
keep_all=False)
args.logger.log('Training from ep %d to ep %d finished' % (args.start_epoch, args.ttl_epoch))
sys.exit(0)
def train(args, epoch, model, data_loader, optimizer):
batch_time = AverageMeter('Time', ':.2f')
data_time = AverageMeter('Data', ':.2f')
losses = AverageMeter('Loss', ':.4f')
top1_meter = AverageMeter('Acc@1', ':.4f')
top5_meter = AverageMeter('Acc@5', ':.4f')
progress = ProgressMeter(
len(data_loader),
[batch_time, data_time, losses, top1_meter, top5_meter],
prefix='Epoch:[{}]'.format(epoch))
if args.train_what == 'last':
model.eval() # totally freeze BN in backbone
else:
model.train()
if args.task == 'lincls' and args.final_bn:
try:
model.final_bn.train()
except:
model.module.final_bn.train()
end = time.time()
tic = time.time()
for idx, (x, target) in enumerate(data_loader):
data_time.update(time.time() - end)
B = x.shape[0]
x = x.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
logit, _ = model(x)
loss = F.cross_entropy(logit, target)
top1, top5 = calc_topk_accuracy(logit, target, (1, 5))
losses.update(loss.item(), B)
top1_meter.update(top1.item(), B)
top5_meter.update(top5.item(), B)
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if idx % args.print_freq == 0:
progress.display(idx)
args.logger.log('train Epoch: [{0}][{1}/{2}]\t'
'T-epoch:{t:.2f}\t'.format(epoch, idx, len(data_loader), t=time.time() - tic))
return losses.avg, top1_meter.avg
def validate(args, epoch, model, data_loader):
batch_time = AverageMeter('Time', ':.2f')
losses = AverageMeter('Loss', ':.4f')
top1_meter = AverageMeter('Acc@1', ':.4f')
top5_meter = AverageMeter('Acc@5', ':.4f')
model.eval()
with torch.no_grad():
end = time.time()
for idx, (x, target) in tqdm(enumerate(data_loader), total=len(data_loader)):
B = x.size(0)
x = x.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
logit, _ = model(x)
loss = F.cross_entropy(logit, target)
top1, top5 = calc_topk_accuracy(logit, target, (1, 5))
losses.update(loss.item(), B)
top1_meter.update(top1.item(), B)
top5_meter.update(top5.item(), B)
batch_time.update(time.time() - end)
end = time.time()
args.logger.log('val Epoch: [{0}]\t'
'Loss: {loss.avg:.4f} Acc@1: {top1.avg:.4f} Acc@5: {top5.avg:.4f}\t'
.format(epoch, loss=losses, top1=top1_meter, top5=top5_meter))
return losses.avg, top1_meter.avg
def test_10crop(args, model, epoch, dataset):
prob_dict = {}
model.eval()
# aug_list: 1,2,3,4,5 = topleft, topright, bottomleft, bottomright, center
# flip_list: 0,1 = raw, flip
if args.center_crop:
print('Test using center crop')
args.logger.log('Test using center_crop\n')
aug_list = [5]
flip_list = [0]
title = 'center'
if args.five_crop:
print('Test using 5 crop')
args.logger.log('Test using 5_crop\n')
aug_list = [5, 1, 2, 3, 4]
flip_list = [0]
title = 'five'
if args.ten_crop:
print('Test using 10 crop')
args.logger.log('Test using 10_crop\n')
aug_list = [5, 1, 2, 3, 4]
flip_list = [0, 1]
title = 'ten'
with torch.no_grad():
end = time.time()
# for loop through 10 types of augmentations, then average the probability
for flip_idx in flip_list:
for aug_idx in aug_list:
print('Aug type: %d flip: %d' % (aug_idx, flip_idx))
if flip_idx == 0:
transform = transforms.Compose([
vT.ToPILImage(),
vT.RandomHorizontalFlip(p=0),
vT.FiveCrop(size=(224, 224), where=aug_idx),
vT.Resize(size=(args.img_dim, args.img_dim)),
transforms.RandomApply([vT.ColorJitter(0.2, 0.2, 0.2, 0.1, per_img=False)], p=0.3),
vT.ToTensor(),
vT.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
vT.ToClip()
])
else:
transform = transforms.Compose([
vT.ToPILImage(),
vT.RandomHorizontalFlip(p=1.),
vT.FiveCrop(size=(224, 224), where=aug_idx),
vT.Resize(size=(args.img_dim, args.img_dim)),
transforms.RandomApply([vT.ColorJitter(0.2, 0.2, 0.2, 0.1, per_img=False)], p=0.3),
vT.ToTensor(),
vT.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
vT.ToClip()
])
dataset.transform = transform
dataset.return_label = True
test_sampler = data.SequentialSampler(dataset)
data_loader = data.DataLoader(dataset,
batch_size=1,
sampler=test_sampler,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
for idx, (x, (target, vpath)) in tqdm(enumerate(data_loader), total=len(data_loader)):
x = x.cuda(non_blocking=True)
logit, _ = model(x)
# average probability along the temporal window
prob_mean = F.softmax(logit, dim=-1).mean(0, keepdim=True)
vpath = vpath[0]
if vpath not in prob_dict.keys():
prob_dict[vpath] = {'mean_prob': [], 'target': target[0].item()}
prob_dict[vpath]['mean_prob'].append(prob_mean)
if (title == 'ten') and (flip_idx == 0) and (aug_idx == 5):
print('center-crop result:')
acc_1 = summarize_probability(prob_dict, 'center')
args.logger.log('center-crop:')
args.logger.log('test Epoch: [{0}]\t'
'Mean: Acc@1: {acc[0].avg:.4f} Acc@5: {acc[1].avg:.4f}'
.format(epoch, acc=acc_1))
if (title == 'ten') and (flip_idx == 0):
print('five-crop result:')
acc_5 = summarize_probability(prob_dict, 'five')
args.logger.log('five-crop:')
args.logger.log('test Epoch: [{0}]\t'
'Mean: Acc@1: {acc[0].avg:.4f} Acc@5: {acc[1].avg:.4f}'
.format(epoch, acc=acc_5))
print('%s-crop result:' % title)
acc_final = summarize_probability(prob_dict, 'ten')
args.logger.log('%s-crop:' % title)
args.logger.log('test Epoch: [{0}]\t'
'Mean: Acc@1: {acc[0].avg:.4f} Acc@5: {acc[1].avg:.4f}'
.format(epoch, acc=acc_final))
sys.exit(0)
def summarize_probability(prob_dict, title):
acc = [AverageMeter(), AverageMeter()]
stat = {}
for vname, item in tqdm(prob_dict.items(), total=len(prob_dict)):
target = item['target']
mean_prob = torch.stack(item['mean_prob'], 0).mean(0)
mean_top1, mean_top5 = calc_topk_accuracy(mean_prob, torch.LongTensor([target]).cuda(), (1, 5))
stat[vname] = {'mean_prob': mean_prob.tolist()}
acc[0].update(mean_top1.item(), 1)
acc[1].update(mean_top5.item(), 1)
print('Mean: Acc@1: {acc[0].avg:.4f} Acc@5: {acc[1].avg:.4f}'
.format(acc=acc))
with open(os.path.join(os.path.dirname(args.test),
'%s-prob-%s.json' % (os.path.basename(args.test), title)), 'w') as fp:
json.dump(stat, fp)
return acc
def test_retrieval(args, model):
model.eval()
with torch.no_grad():
test_transform = transforms.Compose([
vT.ToPILImage(),
vT.CenterCrop(size=(224, 224)),
vT.Resize(size=(args.img_dim, args.img_dim)),
transforms.RandomApply([vT.ColorJitter(0.2, 0.2, 0.2, 0.1, per_img=False)], p=0.3),
vT.ToTensor(),
vT.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
vT.ToClip()
])
train_dataset = VideoDataset(args.train_list, args.video_path, double_sample=False,
transform=test_transform, mode='test',
seq_len=args.seq_len, ds=args.ds,
return_vpath=True,
return_label=True)
train_loader = data.DataLoader(train_dataset, batch_size=1, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
test_dataset = VideoDataset(args.val_list, args.video_path, double_sample=False,
transform=test_transform, mode='test',
seq_len=args.seq_len, ds=args.ds,
return_vpath=True,
return_label=True)
test_loader = data.DataLoader(test_dataset, batch_size=1, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
if args.dirname is None:
dirname = 'feature'
else:
dirname = args.dirname
if os.path.exists(os.path.join(os.path.dirname(args.test), dirname, '%s_test_feature.pth.tar' % args.dataset)):
test_feature = torch.load(
os.path.join(os.path.dirname(args.test), dirname, '%s_test_feature.pth.tar' % args.dataset)).cuda()
test_label = torch.load(
os.path.join(os.path.dirname(args.test), dirname, '%s_test_label.pth.tar' % args.dataset)).cuda()
else:
try:
os.makedirs(os.path.join(os.path.dirname(args.test), dirname))
except:
pass
print('Computing test set feature ... ')
test_feature = None
test_label = []
test_vname = []
sample_id = 0
for idx, (x, (target, vname)) in tqdm(enumerate(test_loader), total=len(test_loader)):
x = x.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
logit, feature = model(x)
if test_feature is None:
test_feature = torch.zeros(len(test_dataset), feature.size(-1), device=feature.device)
test_feature[sample_id, :] = feature.mean(0)
test_label.append(target)
test_vname.append(vname)
sample_id += 1
print(test_feature.size())
test_label = torch.cat(test_label, dim=0)
torch.save(test_feature,
os.path.join(os.path.dirname(args.test), dirname, '%s_test_feature.pth.tar' % args.dataset))
torch.save(test_label,
os.path.join(os.path.dirname(args.test), dirname, '%s_test_label.pth.tar' % args.dataset))
with open(os.path.join(os.path.dirname(args.test), dirname, '%s_test_vname.pkl' % args.dataset),
'wb') as fp:
pickle.dump(test_vname, fp)
if os.path.exists(os.path.join(os.path.dirname(args.test), dirname, '%s_train_feature.pth.tar' % args.dataset)):
train_feature = torch.load(
os.path.join(os.path.dirname(args.test), dirname, '%s_train_feature.pth.tar' % args.dataset)).cuda()
train_label = torch.load(
os.path.join(os.path.dirname(args.test), dirname, '%s_train_label.pth.tar' % args.dataset)).cuda()
else:
print('Computing train set feature ... ')
train_feature = None
train_label = []
train_vname = []
sample_id = 0
for idx, (x, (target, vname)) in tqdm(enumerate(train_loader), total=len(train_loader)):
x = x.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
logit, feature = model(x)
if train_feature is None:
train_feature = torch.zeros(len(train_dataset), feature.size(-1), device=feature.device)
train_feature[sample_id, :] = feature.mean(0)
train_label.append(target)
train_vname.append(vname)
sample_id += 1
print(train_feature.size())
train_label = torch.cat(train_label, dim=0)
torch.save(train_feature,
os.path.join(os.path.dirname(args.test), dirname, '%s_train_feature.pth.tar' % args.dataset))
torch.save(train_label,
os.path.join(os.path.dirname(args.test), dirname, '%s_train_label.pth.tar' % args.dataset))
with open(os.path.join(os.path.dirname(args.test), dirname, '%s_train_vname.pkl' % args.dataset),
'wb') as fp:
pickle.dump(train_vname, fp)
ks = [1, 5, 10, 20, 50]
NN_acc = []
# centering
test_feature = test_feature - test_feature.mean(dim=0, keepdim=True)
train_feature = train_feature - train_feature.mean(dim=0, keepdim=True)
# normalize
test_feature = F.normalize(test_feature, p=2, dim=1)
train_feature = F.normalize(train_feature, p=2, dim=1)
# dot product
sim = test_feature.matmul(train_feature.t())
torch.save(sim, os.path.join(os.path.dirname(args.test), dirname, '%s_sim.pth.tar' % args.dataset))
for k in ks:
topkval, topkidx = torch.topk(sim, k, dim=1)
acc = torch.any(train_label[topkidx] == test_label.unsqueeze(1), dim=1).float().mean().item()
NN_acc.append(acc)
# print('%dNN acc = %.4f' % (k, acc))
args.logger.log('NN-Retrieval on %s:' % args.dataset)
for k, acc in zip(ks, NN_acc):
args.logger.log('\t%dNN acc = %.4f' % (k, acc))
sys.exit(0)
if __name__ == '__main__':
args = parse_args()
main(args)