-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrequirements-dev.lock
156 lines (155 loc) · 2.95 KB
/
requirements-dev.lock
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# generated by rye
# use `rye lock` or `rye sync` to update this lockfile
#
# last locked with the following flags:
# pre: false
# features: []
# all-features: false
# with-sources: false
# generate-hashes: false
# universal: false
-e file:.
anndata==0.10.9
# via mrsa-ca-rna
array-api-compat==1.8
# via anndata
asttokens==2.4.1
# via stack-data
comm==0.2.2
# via ipywidgets
contourpy==1.3.0
# via matplotlib
coverage==7.6.1
# via pytest-cov
cupy-cuda12x==13.3.0
# via mrsa-ca-rna
cycler==0.12.1
# via matplotlib
decorator==5.1.1
# via ipython
executing==2.1.0
# via stack-data
fastrlock==0.8.2
# via cupy-cuda12x
fonttools==4.54.1
# via matplotlib
h5py==3.12.0
# via anndata
iniconfig==2.0.0
# via pytest
ipympl==0.9.4
# via mrsa-ca-rna
ipython==8.27.0
# via ipympl
# via ipywidgets
ipython-genutils==0.2.0
# via ipympl
ipywidgets==8.1.5
# via ipympl
jedi==0.19.1
# via ipython
joblib==1.4.2
# via scikit-learn
jupyterlab-widgets==3.0.13
# via ipywidgets
kiwisolver==1.4.7
# via matplotlib
lxml==5.3.0
# via svgutils
matplotlib==3.9.2
# via ipympl
# via mrsa-ca-rna
# via seaborn
matplotlib-inline==0.1.7
# via ipython
natsort==8.4.0
# via anndata
nodeenv==1.9.1
# via pyright
numpy==2.1.1
# via anndata
# via contourpy
# via cupy-cuda12x
# via h5py
# via ipympl
# via matplotlib
# via pandas
# via scikit-learn
# via scipy
# via seaborn
# via tensorly
# via xarray
packaging==24.1
# via anndata
# via matplotlib
# via pytest
# via xarray
pandas==2.2.3
# via anndata
# via mrsa-ca-rna
# via seaborn
# via xarray
parso==0.8.4
# via jedi
pexpect==4.9.0
# via ipython
pillow==10.4.0
# via ipympl
# via matplotlib
pluggy==1.5.0
# via pytest
prompt-toolkit==3.0.48
# via ipython
ptyprocess==0.7.0
# via pexpect
pure-eval==0.2.3
# via stack-data
pygments==2.18.0
# via ipython
pyparsing==3.1.4
# via matplotlib
pyright==1.1.382.post0
pytest==8.3.3
# via pytest-cov
pytest-cov==5.0.0
python-dateutil==2.9.0.post0
# via matplotlib
# via pandas
pytz==2024.2
# via pandas
scikit-learn==1.5.2
# via mrsa-ca-rna
scipy==1.14.1
# via anndata
# via scikit-learn
# via tensorly
seaborn==0.13.2
# via mrsa-ca-rna
six==1.16.0
# via asttokens
# via python-dateutil
stack-data==0.6.3
# via ipython
svgutils==0.3.4
# via mrsa-ca-rna
tensorly @ git+https://github.com/tensorly/tensorly.git@041cd699d08ae846acbc4e921e0f490e39269760
# via mrsa-ca-rna
threadpoolctl==3.5.0
# via scikit-learn
traitlets==5.14.3
# via comm
# via ipympl
# via ipython
# via ipywidgets
# via matplotlib-inline
typing-extensions==4.12.2
# via ipython
# via pyright
tzdata==2024.2
# via pandas
wcwidth==0.2.13
# via prompt-toolkit
widgetsnbextension==4.0.13
# via ipywidgets
xarray==2024.9.0
# via mrsa-ca-rna