-
Notifications
You must be signed in to change notification settings - Fork 0
/
requirements.lock
332 lines (331 loc) · 5.98 KB
/
requirements.lock
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# generated by rye
# use `rye lock` or `rye sync` to update this lockfile
#
# last locked with the following flags:
# pre: false
# features: []
# all-features: false
# with-sources: false
# generate-hashes: false
# universal: false
-e file:.
anndata==0.10.9
# via doubletdetection
# via parafac2
# via scanpy
# via sccp
# via scib
annoy==1.17.3
# via pacmap
array-api-compat==1.8
# via anndata
asttokens==2.4.1
# via stack-data
certifi==2024.8.30
# via requests
charset-normalizer==3.3.2
# via requests
click==8.1.7
# via dask
cloudpickle==3.0.0
# via dask
colorcet==3.1.0
# via datashader
comm==0.2.2
# via ipywidgets
contourpy==1.3.0
# via matplotlib
cupy-cuda12x==13.3.0
# via parafac2
cycler==0.12.1
# via matplotlib
dask==2024.8.2
# via dask-expr
# via datashader
# via sccp
dask-expr==1.1.13
# via dask
datashader==0.16.3
# via sccp
decorator==5.1.1
# via ipython
deprecated==1.2.14
# via scib
doubletdetection==4.2
# via sccp
executing==2.1.0
# via stack-data
fastrlock==0.8.2
# via cupy-cuda12x
fonttools==4.53.1
# via matplotlib
fsspec==2024.9.0
# via dask
gseapy==1.1.3
# via sccp
h5netcdf==1.3.0
# via sccp
h5py==3.11.0
# via anndata
# via h5netcdf
# via scanpy
# via scib
idna==3.8
# via requests
igraph==0.11.6
# via leidenalg
# via louvain
# via scib
ipython==8.27.0
# via ipywidgets
ipywidgets==8.1.5
# via doubletdetection
jedi==0.19.1
# via ipython
joblib==1.4.2
# via pynndescent
# via scanpy
# via scikit-learn
jupyterlab-widgets==3.0.13
# via ipywidgets
kiwisolver==1.4.7
# via matplotlib
legacy-api-wrap==1.4
# via scanpy
leidenalg==0.10.2
# via doubletdetection
# via phenograph
# via sccp
# via scib
llvmlite==0.43.0
# via numba
# via pynndescent
# via scib
locket==1.0.0
# via partd
louvain==0.8.2
# via doubletdetection
matplotlib==3.9.2
# via doubletdetection
# via gseapy
# via scanpy
# via scib
# via seaborn
# via tlviz
matplotlib-inline==0.1.7
# via ipython
multipledispatch==1.0.0
# via datashader
natsort==8.4.0
# via anndata
# via scanpy
networkx==3.3
# via scanpy
numba==0.60.0
# via datashader
# via pacmap
# via pynndescent
# via scanpy
# via scib
# via umap-learn
numpy==2.0.2
# via anndata
# via contourpy
# via cupy-cuda12x
# via dask
# via datashader
# via doubletdetection
# via gseapy
# via h5py
# via matplotlib
# via numba
# via pacmap
# via pandas
# via parafac2
# via patsy
# via phenograph
# via pyarrow
# via scanpy
# via sccp
# via scib
# via scikit-learn
# via scikit-misc
# via scipy
# via seaborn
# via statsmodels
# via tensorly
# via tlviz
# via umap-learn
# via xarray
packaging==24.1
# via anndata
# via dask
# via datashader
# via h5netcdf
# via matplotlib
# via scanpy
# via statsmodels
# via xarray
pacmap==0.7.3
# via parafac2
# via sccp
pandas==2.2.2
# via anndata
# via dask
# via dask-expr
# via datashader
# via doubletdetection
# via gseapy
# via scanpy
# via sccp
# via scib
# via seaborn
# via statsmodels
# via tlviz
# via xarray
parafac2 @ git+https://github.com/meyer-lab/parafac2.git@6600c677a77d0f242668babf39559cf7953ff534
# via sccp
param==2.1.1
# via datashader
# via pyct
parso==0.8.4
# via jedi
partd==1.4.2
# via dask
patsy==0.5.6
# via scanpy
# via statsmodels
pexpect==4.9.0
# via ipython
phenograph==1.5.7
# via doubletdetection
pillow==10.4.0
# via datashader
# via matplotlib
prompt-toolkit==3.0.47
# via ipython
psutil==6.0.0
# via phenograph
ptyprocess==0.7.0
# via pexpect
pure-eval==0.2.3
# via stack-data
pyarrow==17.0.0
# via dask-expr
pyct==0.5.0
# via datashader
pydot==3.0.1
# via scib
pygments==2.18.0
# via ipython
pynndescent==0.5.13
# via scanpy
# via umap-learn
pyparsing==3.1.4
# via matplotlib
# via pydot
python-dateutil==2.9.0.post0
# via matplotlib
# via pandas
pytz==2024.2
# via pandas
pyyaml==6.0.2
# via dask
requests==2.32.3
# via datashader
# via gseapy
# via tlviz
scanpy==1.10.4
# via doubletdetection
# via sccp
# via scib
scib==1.1.5
# via sccp
scikit-learn==1.6.0
# via pacmap
# via parafac2
# via phenograph
# via pynndescent
# via scanpy
# via sccp
# via scib
# via umap-learn
scikit-misc==0.5.1
# via scib
scipy==1.14.1
# via anndata
# via datashader
# via doubletdetection
# via gseapy
# via parafac2
# via phenograph
# via pynndescent
# via scanpy
# via sccp
# via scib
# via scikit-learn
# via statsmodels
# via tensorly
# via tlviz
# via umap-learn
seaborn==0.13.2
# via scanpy
# via sccp
# via scib
session-info==1.0.0
# via scanpy
setuptools==74.1.2
# via phenograph
six==1.16.0
# via asttokens
# via patsy
# via python-dateutil
stack-data==0.6.3
# via ipython
statsmodels==0.14.2
# via scanpy
# via sccp
# via tlviz
stdlib-list==0.10.0
# via session-info
tensorly==0.8.1
# via parafac2
# via sccp
texttable==1.7.0
# via igraph
threadpoolctl==3.5.0
# via scikit-learn
tlviz==0.1.1
# via parafac2
# via sccp
toolz==0.12.1
# via dask
# via datashader
# via partd
tqdm==4.66.5
# via doubletdetection
# via parafac2
# via scanpy
# via sccp
# via umap-learn
traitlets==5.14.3
# via comm
# via ipython
# via ipywidgets
# via matplotlib-inline
tzdata==2024.1
# via pandas
umap-learn==0.5.6
# via scanpy
# via scib
urllib3==2.2.3
# via requests
wcwidth==0.2.13
# via prompt-toolkit
widgetsnbextension==4.0.13
# via ipywidgets
wrapt==1.16.0
# via deprecated
xarray==2024.9.0
# via datashader
# via tlviz