Skip to content

Commit 1f93d58

Browse files
committed
rename union input: input data list --> input datas
edit doc Signed-off-by: Yu Wu <yolandawu131@gmail.com>
1 parent d5ff639 commit 1f93d58

File tree

6 files changed

+49
-49
lines changed

6 files changed

+49
-49
lines changed

doc/2.0/fate/components/README.md

+20-20
Original file line numberDiff line numberDiff line change
@@ -20,23 +20,23 @@ provide:
2020
For tutorial on running modules directly(without FATE-Client) with launcher,
2121
please refer [here](../ml/run_launchers.md).
2222

23-
| Algorithm | Module Name | Description | Data Input | Data Output | Model Input | Model Output |
24-
|--------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------|
25-
| [Reader](readme.md) | | Component to passing namespace,name to downstream tasks | | output_data | | |
26-
| [PSI](psi.md) | PSI | Compute intersect data set of multiple parties without leakage of difference set information. Mainly used in hetero scenario task. | input_data | output_data | | |
27-
| [Sampling](sample.md) | Sample | Federated Sampling data so that its distribution become balance in each party.This module supports local and federation scenario. | input_data | output_data | | |
28-
| [Data Split](data_split.md) | DataSplit | Split one data table into 3 tables by given ratio or count, this module supports local and federation scenario | input_data | train_output_data, validate_output_data, test_output_data | | |
29-
| [Feature Scale](feature_scale.md) | FeatureScale | module for feature scaling and standardization. | train_data, test_data | train_output_data, test_output_data | input_model | output_model |
30-
| [Data Statistics](statistics.md) | Statistics | This component will do some statistical work on the data, including statistical mean, maximum and minimum, median, etc. | input_data | | | output_model |
31-
| [Hetero Feature Binning](feature_binning.md) | HeteroFeatureBinning | With binning input data, calculates each column's iv and woe and transform data according to the binned information. | train_data, test_data | train_output_data, test_output_data | input_model | output_model |
32-
| [Hetero Feature Selection](feature_selection.md) | HeteroFeatureSelection | Provide 3 types of filters. Each filters can select columns according to user config | train_data, test_data | train_output_data, test_output_data | input_models, input_model | output_model |
33-
| [Coordinated-LR](logistic_regression.md) | CoordinatedLR | Build hetero logistic regression model through multiple parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
34-
| [Coordinated-LinR](linear_regression.md) | CoordinatedLinR | Build hetero linear regression model through multiple parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
35-
| [Homo-LR](logistic_regression.md) | HomoLR | Build homo logistic regression model through multiple parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
36-
| [Homo-NN](homo_nn.md) | HomoNN | Build homo neural network model through multiple parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
37-
| [Hetero-NN](hetero_nn.md) | HeteroNN | Build hetero neural network model through multiple parties. | train_data, validate_data, test_data | train_output_data, test_output_data | warm_start_model, input_model | output_model |
38-
| [Hetero Secure Boosting](hetero_secureboost.md) | HeteroSecureBoost | Build hetero secure boosting model through multiple parties | train_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | warm_start_model, input_model | output_model |
39-
| [Evaluation](evaluation.md) | Evaluation | Output the model evaluation metrics for user. | input_data | | | |
40-
| [Union](union.md) | Union | Combine multiple data tables into one. | input_data_list | output_data | | |
41-
| [SSHE-LR](logistic_regression.md) | SSHELR | Build hetero logistic regression model through two parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
42-
| [SSHE-LinR](linear_regression.md) | SSHELinR | Build hetero linear regression model through two parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
23+
| Algorithm | Module Name | Description | Data Input | Data Output | Model Input | Model Output |
24+
|--------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|-------------------------------|--------------|
25+
| [Reader](readme.md) | | Component to passing namespace,name to downstream tasks | | output_data | | |
26+
| [PSI](psi.md) | PSI | Compute intersect data set of multiple parties without leakage of difference set information. Mainly used in hetero scenario task. | input_data | output_data | | |
27+
| [Sampling](sample.md) | Sample | Federated Sampling data so that its distribution become balance in each party.This module supports local and federation scenario. | input_data | output_data | | |
28+
| [Data Split](data_split.md) | DataSplit | Split one data table into 3 tables by given ratio or count, this module supports local and federation scenario | input_data | train_output_data, validate_output_data, test_output_data | | |
29+
| [Feature Scale](feature_scale.md) | FeatureScale | module for feature scaling and standardization. | train_data, test_data | train_output_data, test_output_data | input_model | output_model |
30+
| [Data Statistics](statistics.md) | Statistics | This component will do some statistical work on the data, including statistical mean, maximum and minimum, median, etc. | input_data | | | output_model |
31+
| [Hetero Feature Binning](feature_binning.md) | HeteroFeatureBinning | With binning input data, calculates each column's iv and woe and transform data according to the binned information. | train_data, test_data | train_output_data, test_output_data | input_model | output_model |
32+
| [Hetero Feature Selection](feature_selection.md) | HeteroFeatureSelection | Provide 3 types of filters. Each filters can select columns according to user config | train_data, test_data | train_output_data, test_output_data | input_models, input_model | output_model |
33+
| [Coordinated-LR](logistic_regression.md) | CoordinatedLR | Build hetero logistic regression model through multiple parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
34+
| [Coordinated-LinR](linear_regression.md) | CoordinatedLinR | Build hetero linear regression model through multiple parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
35+
| [Homo-LR](logistic_regression.md) | HomoLR | Build homo logistic regression model through multiple parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
36+
| [Homo-NN](homo_nn.md) | HomoNN | Build homo neural network model through multiple parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
37+
| [Hetero-NN](hetero_nn.md) | HeteroNN | Build hetero neural network model through multiple parties. | train_data, validate_data, test_data | train_output_data, test_output_data | warm_start_model, input_model | output_model |
38+
| [Hetero Secure Boosting](hetero_secureboost.md) | HeteroSecureBoost | Build hetero secure boosting model through multiple parties | train_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | warm_start_model, input_model | output_model |
39+
| [Evaluation](evaluation.md) | Evaluation | Output the model evaluation metrics for user. | input_data | | | |
40+
| [Union](union.md) | Union | Combine multiple data tables into one. | input_datas | output_data | | |
41+
| [SSHE-LR](logistic_regression.md) | SSHELR | Build hetero logistic regression model through two parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |
42+
| [SSHE-LinR](linear_regression.md) | SSHELinR | Build hetero linear regression model through two parties. | train_data, validate_data, test_data, cv_data | train_output_data, test_output_data, cv_output_datas | input_model, warm_start_model | output_model |

0 commit comments

Comments
 (0)