forked from jugengawande/TSPsolverUsingEvolutionary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
HY.py
701 lines (478 loc) · 18.5 KB
/
HY.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# Developed by Jugen Gawande
# This is a python script to solve Travelling Salesman Problem using an evolutionary optimization
# algorithm called Genetic Algorithm.
import numpy as np
import random
import math
import pandas as pd
from os import system
import crossover
import mutation
from datetime import datetime
import logging
import configparser
import matplotlib
import matplotlib.pyplot as plt
import sys
from time import time
from multiprocessing import Process, Value, Array
from threading import Thread
from queue import Queue
T = 0.02
alpha_temp = 0.9
CONFIG = configparser.ConfigParser()
CONFIG.read('controller.ini')
#Calculators
numberOfCities = 0
totalFitness = 0
genEvolved = 0
loc_multiplier = math.pi / 180
#Result Store
minDist = math.inf
bestRoute = []
tempDistMatx = []
switch = False
#Data-plotting
fitness_curve = []
#Performance Measure
s_t = 0.0
e_t = 0.0
ex_time = 0.0
scale_factor = 0.000125
def addCity_using_coords():
global numberOfCities, cityCoord,distanceMatrix, s_t, e_t
s_t = time()
cityCoord = []
try:
with open(str(data_fname), "r") as f:
for line in f:
i, x, y = line.split()
cityCoord.append([float(x)*scale_factor,float(y)*scale_factor]) #Convert to float for accuracy
numberOfCities = len(cityCoord)
if numberOfCities > 0:
distanceMatrix = []
logger.info("Successfully added {cit} cities from data.".format(cit = numberOfCities))
generateDistMatrix()
except:
logger.warning("Dataset could not be loaded")
sys.exit()
def addCity_using_dist():
global distanceMatrix, numberOfCities, s_t, e_t
s_t = time()
dist_row = []
with open(str(data_fname), "r") as f:
for line in f:
for val in line.split():
dist_row.append(float(val))
distanceMatrix.append (dist_row)
dist_row = []
numberOfCities = len(distanceMatrix[0])
logger.info("Successfully added {cit} cities from data.".format(cit = numberOfCities))
e_t = time()
logger.info("CPU took {} to complete data loading and distance matrix building".format(e_t-s_t))
def generateDistMatrix():
global distanceMatrix, s_t, e_t
global numberOfCities
def deg2rad(deg):
return deg * loc_multiplier
for i in range(numberOfCities):
dist_row = []
for j in range(i): #Generating entire matrix. Can be optimized by generating upward triangle matrix
a = cityCoord[i]
b = cityCoord[j]
#Find Euclidean distance between points
if (data_cordinate == True):
distance = math.sqrt(math.pow(b[0]-a[0], 2) + math.pow(b[1] - a[1], 2 ))
dist_row.append(float(distance)) #Using python list comprehension for better performance
else:
R = 6371 #Radius of the earth in km
lat1 = a[0]
lat2 = b[0]
long1 = a[1]
long2 = b[1]
dLat = deg2rad(lat2-lat1)
dLon = deg2rad(long2-long1)
a = math.sin(dLat/2) * math.sin(dLat/2) + math.cos(deg2rad(lat1)) * math.cos(deg2rad(lat2)) * math.sin(dLon/2) * math.sin(dLon/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
distance = R * c
dist_row.append(float(distance))
distanceMatrix.append (dist_row)
e_t = time()
logger.info("CPU took {} to complete data loading and distance matrix building".format(e_t-s_t))
# print(distanceMatrix)
def findChromo(pop ):
global temp_pop
r = random.random()
if(r > 0.5):
pop = SA(pop,0.0, 0.0025, numberOfCities, distanceMatrix, res, res_arr)
else:
np.random.shuffle(pop[1:])
temp_pop.append(pop)
threads = []
def generateInitPop():
global numberOfCities, populationSize, threads
pop = list(range(numberOfCities))
pop.append(0)
for i in range(populationSize):
pop.pop(0)
pop.pop()
pop_t = random.sample(pop, len(pop))
pop_t.append(0)
pop_t.insert(0,0)
populationMatrix.append(pop_t)
pop = pop_t.copy()
logger.info("{} intial chromorsome populated".format(len(populationMatrix)))
if (len(populationMatrix) == populationSize):
logger.info("Initial population generated successfully")
calculateFitness()
def matingPoolSelection():
#Using Roulette wheel selection we will assign probabilities from 0-1 to
#each individual. The probability will determine how often we select a fit individual
global totalFitness, fitnessMatrix
index = 0
r = random.random()
while( r > 0):
r = r - fitnessMatrix[index]
index += 1
index -= 1
return populationMatrix[index].copy()
def calculateFitness():
global totalFitness, fitnessMatrix, minDist, fitness_curve, bestRoute, generation_fitness
fitnessMatrix =[]
for individual in populationMatrix:
distance = 0
for j in range(len(individual)-1):
if(individual[j] < individual[j+1]):
distance += distanceMatrix[individual[j+1]] [individual[j]]
else:
distance += distanceMatrix [individual[j]] [individual[j+1]]
fitnessMatrix.append( 1 / distance ) #For routes with smaller distance to have highest fitness
#Updating the best distance variable when a distance that is smaller than all
#previous calculations is found
if distance < minDist:
minDist = distance
bestRoute = individual.copy()
totalFitness = sum(fitnessMatrix)
fitnessMatrix = [x / totalFitness for x in fitnessMatrix] #Normalizing the fitness values between [0-1]
fitness_curve.append(round(minDist / scale_factor, 2))
#generation_fitness.loc[len(generation_fitness)] = fitnessMatrix
def mutateChild(gene):
global mutationRate
r = random.random()
if r < mutationRate:
if (mt_opt == "RSM"):
return mutation.RSM(gene)
else:
return mutation.Twors(gene)
def nextGeneration():
global nextGenerationMatrix, populationMatrix, genCount, bestRoute
nextGenerationMatrix.append (bestRoute) #Elitism, moving the fittest gene to the new generation as is
nextGenerationMatrix.append (bestRoute)
while (len(nextGenerationMatrix) < populationSize-2):
parentA = matingPoolSelection()
parentB = matingPoolSelection()
#Crossover Probability
r = random.random()
if r < 0.8:
if (cx_opt == "OC_Single"):
childA, childB = crossover.OC_Single(parentA, parentB)
elif (cx_opt == "cycleCrossover"):
childA, childB = crossover.cycleCrossover(parentA, parentB)
elif (cx_opt == "OC_Multi"):
childA, childB = crossover.OC_Multi(parentA, parentB)
elif (cx_opt == "PMS"):
childA, childB = crossover.PMS(parentA, parentB)
else:
logger.warning("Unknown crossover operator configured.")
logger.warning("Model cannot be executed")
sys.exit()
mutateChild(childA)
mutateChild(childB)
nextGenerationMatrix.append(childA)
nextGenerationMatrix.append(childB)
else:
nextGenerationMatrix.append(parentA)
nextGenerationMatrix.append(parentB)
populationMatrix = nextGenerationMatrix.copy()
nextGenerationMatrix.clear()
calculateFitness()
def calculateSolutionFitness(arr):
distance = 0
for j in range(len(arr)-1):
if(arr[j] < arr[j+1]):
distance += distanceMatrix[arr[j+1]][arr[j]]
else:
distance += distanceMatrix[arr[j]][arr[j+1]]
return (distance)
def reverse(arr, a, b):
x = arr[:a].copy()
y = arr[a:b+1].copy()
z = arr[b+1:].copy()
w = y[::-1].copy()
if (b != len(arr)-1):
s = calculateSolutionFitness([arr[a-1], *y, arr[b+1]])
s_dash = calculateSolutionFitness([arr[a-1], *w , arr[b+1]])
else:
s = calculateSolutionFitness([arr[a-1], *y])
s_dash = calculateSolutionFitness([arr[a-1],*w])
del_e = s_dash - s
if(del_e < 0):
return ([*x, *w, *z])
elif(del_e > 0):
pr = math.exp((-del_e) / (T) )
a = random.random()
if (pr > a):
return ([*x, *w, *z])
else: return (arr)
else: return(arr)
def transport(arr, a, b):
x = arr[:a].copy()
y = arr[a:b+1].copy()
z = arr[b+1:].copy()
m = arr[a-1:b+1].copy()
s = calculateSolutionFitness(m)
if((b-a) > len(arr)-2):
if(b != len(arr)-1):
u = random.randint(0,len(z)-1)
if (u == 0):
s_dash = calculateSolutionFitness([arr[a-1], *arr[a:b+1],z[u]])
else:
s_dash = calculateSolutionFitness([z[u-1], *arr[a:b+1], z[u]])
else:
u = random.randint(1,len(x)-1)
s_dash = calculateSolutionFitness([arr[u], *arr[a:b+1], arr[u+1]])
else:
return(arr)
del_e = s_dash - s
if(del_e < 0):
return [*x, *z[:u], *y, *z[u:]]
elif(del_e > 0):
pr = math.exp((-del_e) / (T) )
a = random.random()
if (pr > a):
return [*x, *z[:u], *y, *z[u:]]
else: return (arr)
else: return(arr)
def testNeighbor(arr):
r = random.random()
size = len(arr)
a = random.randint(1,size-4)
b = random.randint(a+1, size-2)
newarr = []
if r > 0.5:
return (reverse(arr, a, b))
else:
return (transport(arr, a, b))
def SA():
global T
solution_set = []
arr = bestRoute.copy()
# while(accepted >= endp):
k=0
m = minDist
while(k != 20):
accepted = 0
# for i in range(50*len(arr)):
for i in range(100*len(arr)):
new_arr = testNeighbor(arr)
if(new_arr != arr):
accepted += 1
arr = new_arr.copy()
T *= alpha_temp
k += 1
val = calculateSolutionFitness(arr)
print("\rIter: ", k, end="\r")
if(m > val):
solution_set.append(arr)
m = val
return (solution_set, m)
def GA():
global nextGenerationMatrix, populationMatrix, bestRoute, dead_count, genEvolved,s_t, e_t, switch, minDist, ex_time
counter = 0
i=0
end = False
while(i < genCount):
m = minDist
nextGeneration()
if(minDist == m):
counter += 1
else:
print("\r","Gen: ",i," ",minDist / scale_factor, end = "\r")
counter = 0
if (counter == dead_count):
ans, h = SA()
nextGenerationMatrix.clear()
nextGenerationMatrix.extend(ans)
counter = 0
calculateFitness()
if (h >= m):
end = True
if(end == True):
genEvolved = len(fitness_curve)
logger.info("\nGENERATIONS EVOLVED={gen}".format(gen=str(genEvolved)))
break
else:
i+=1
#Graphing
def graphing():
global fitness_curve, genEvolved
fig = plt.figure(figsize = (23,8))
fig.set_facecolor('#05070A')
ax = fig.add_subplot(1, 2, 1)
# decreasing time
ax.set_xlabel('Generation', fontname="Calibri",fontweight="bold", fontsize=14)
ax.set_ylabel('Distance', fontname="Calibri",fontweight="bold", fontsize=14)
ax.spines['bottom'].set_color('#FFFAFF')
ax.spines['left'].set_color('#FFFAFF')
ax.spines['top'].set_color('#05070A')
ax.spines['right'].set_color('#05070A')
for axis in ['top','bottom','left','right']:
ax.spines[axis].set_linewidth(1)
ax.tick_params(axis='x', colors='#FFFAFF')
ax.tick_params(axis='y', colors='#FFFAFF')
ax.yaxis.label.set_color('#1B9AAA')
ax.xaxis.label.set_color('#1B9AAA')
ax.title.set_color('#EEC643')
ax.set_facecolor('#05070A')
ax.grid(True,linewidth = 0.1)
plt.title("Fitness Evolution Curve", loc='center' ,fontname="Calibri",fontweight="bold", fontsize=18)
x = np.arange(len(fitness_curve))
y = fitness_curve
x1 = [0]
y1 = [fitness_curve[0]]
for i in range(genEvolved-1):
if fitness_curve[i] != fitness_curve[i+1]:
y1.append(fitness_curve[i+1])
x1.append(i+1)
ax.plot(x,y, color = ("#72B01D"), linewidth = 2)
# gap = math.ceil(genEvolved / 25)
# plt.xticks(np.arange(0, genEvolved, gap ))
sol = fig.add_subplot(1, 2, 2)
m = []
n = []
r = []
e = []
for i in cityCoord:
m.append (i[0])
n.append (i[1])
for j in bestRoute:
r.append(cityCoord[j] [0])
e.append (cityCoord[j] [1])
sol.spines['bottom'].set_color('#05070A')
sol.spines['left'].set_color('#05070A')
sol.spines['top'].set_color('#05070A')
sol.spines['right'].set_color('#05070A')
plt.xticks(x, " ")
plt.yticks(y, " ")
sol.set_facecolor('#05070A')
sol.plot(r, e, color = ("#CC3363"), linewidth = 2)
sol.scatter(m[1:],n[1:], color = "#F79824", marker = "^" )
sol.scatter(m[0],n[0], color = "#F79824", marker = "s", s = 75)
fig.text(0.92, 0.84, '[INFO]', color = '#86BBD8')
fig.text(0.92, 0.8, 'MIN DIST={:.2f}'.format(minDist / scale_factor), color = '#F5F1E3')
fig.text(0.92, 0.78, 'GEN EVOLVED={}'.format(genEvolved), color = '#F5F1E3')
fig.text(0.92, 0.76, 'DATASET={}'.format(data), color = '#F5F1E3')
fig.text(0.92, 0.74, 'POP SIZE={}'.format(populationSize), color = '#F5F1E3')
fig.text(0.92, 0.72, 'MUT RATE={}'.format(mutationRate), color = '#F5F1E3')
fig.text(0.92, 0.70, 'CROSSOVER OPT={}'.format(CONFIG['OPERATOR']['CROSSOVER_OPERATOR']), color = '#F5F1E3')
fig.text(0.92, 0.68, 'TEMPERATURE={}'.format(CONFIG['SIMULATED ANNEALING']['TEMPERATURE']), color = '#F5F1E3')
fig.text(0.70, 0.02, "TSP solved using Modified Genetic Algorithm using SA [Visualizer] {}".format(datetime.now()), color = '#86BBD8')
c=0.95
x = 0.01
for i in range(len(x1)):
if(c < 0.05):
c = 0.95
x = 0.055
fig.text(x,c,"[{}]{}".format(x1[i],y1[i]), fontsize=8, color = "#FAC9B8" )
c-=0.02
plt.subplots_adjust(left=0.15)
logger.info("Fitness Curve generated")
if(set_debug == True):
hjhsda = "./logs/output_curve/G_MGASA_{}_{}_{}.png".format(datetime.now().strftime("%d-%m-%y %H_%M"), data, round(minDist / scale_factor))
fig.savefig(hjhsda, facecolor=fig.get_facecolor(), edgecolor='none')
logger.info("Fitness Curve exported to logs\nFile name: {}".format(hjhsda) )
#plt.show() #To view graph after generating
#Data Logging
def loggingSetup():
global logger
logger = logging.getLogger('tsp_hybrid')
fname = "./logs/test_log/TSP_GA_" + datetime.now().strftime("%d-%m-%y %H_%M") + "_" + data +"_"+ str(populationSize) + "_" + str(mutationRate) + ".log"
logger.setLevel(logging.INFO)
# create file handler which logs even debug messages
if(set_debug == True):
fh = logging.FileHandler(fname)
fh.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
if(set_debug == True):
logger.addHandler(fh)
logger.addHandler(ch)
logger.info("TSP USING Genetic Algorithm\nDeveloped by Jugen Gawande")
logger.info(str(datetime.now()))
logger.info("\nPOPULATION SIZE={pop} \nMUTATION RATE={mut} \nDATASET SELECTED={name}".format(pop =populationSize, mut = mutationRate, name = data))
def outputRecord():
global generation_fitness
with open("./logs/visualize_data.txt", "w") as f:
f.write(" ".join(str(item) for item in fitness_curve))
f.write("\n")
rname = "./logs/MGASA.csv"
try:
with open(rname, "r") as f:
for index, l in enumerate(f):
pass
except:
index = -1
with open(rname, "a") as f:
f.write("Test {}, {}, {}, {}, {}, {}, {}, {}, {}, {}\n".format(index+2 ,datetime.now(), data,CONFIG['OPERATOR']['CROSSOVER_OPERATOR'],CONFIG['OPERATOR']['MUTATION_OPERATOR'], populationSize, mutationRate, round ((minDist/ scale_factor),2), len(fitness_curve), round(ex_time, 4) ))
logger.info("Test results recorded.")
logger.info("Visualization Data Generated")
#generation_fitness = generation_fitness.round(5)
#generation_fitness.to_csv("./logs/curve_log/GenFit_MGASA_data_{}.csv".format(datetime.now().strftime("%d-%m-%y %H_%M")), header=None, index=None, sep=',', mode='a')
#generation_fitness.to_csv('./logs/visualize_data.txt', header=None, index=None, sep=' ', mode='a')
graphing()
#Controller Variables
def initializeAlgorithm():
global data, data_type_flag, populationSize, mutationRate, mt_opt, genCount, dead_count, cx_opt, set_debug, data_cordinate, data_fname
data = CONFIG['DATASET']['FILE_NAME']
data_type_flag = CONFIG.getint('DATASET', 'DATASET_TYPE')
populationSize = CONFIG.getint('GENETIC', 'POP_SIZE')
if (populationSize < 1):
logger.warning("Population size not enough")
sys.exit()
mutationRate = CONFIG.getfloat('GENETIC', 'MUTATION_RATE')
genCount = CONFIG.getint('GENETIC', 'GEN_COUNT')
dead_count = CONFIG.getint('GENETIC', 'DEAD_COUNTER')
cx_opt = CONFIG['OPERATOR']['CROSSOVER_OPERATOR']
mt_opt = CONFIG['OPERATOR']['MUTATION_OPERATOR']
set_debug = CONFIG.getboolean('DEBUG', 'LOG_FILE')
data_cordinate = CONFIG.getboolean('DATASET','CONTAINS_COORDINATES')
data_fname = "./dataset/" + data + ".txt"
if __name__ == '__main__':
initializeAlgorithm()
loggingSetup()
if data_type_flag == 0:
addCity_using_coords()
else:
addCity_using_dist()
res = Value('f', minDist, lock=False )
p = numberOfCities + 1
res_arr = Array('i', p , lock=False )
#Initialize pandas dataframes
generation_fitness = pd.DataFrame(columns = np.arange(populationSize))
populationMatrix = []
nextGenerationMatrix = []
#Run Genetic Algorithm
s_t = time()
generateInitPop()
GA()
e_t = time()
ex_time = e_t-s_t
#logger.info("FITNESS CURVE:\n{}".format(fitness_curve))
logger.info("CPU execution time: {}".format(ex_time))
logger.info("MINIMAL DISTANCE={}".format(minDist / scale_factor))
logger.info("BEST ROUTE FOUND={}".format(bestRoute))
logger.info("\nAlgorithm Completed Successfully.")
#Will fail if all generations are exhausted
if(set_debug == True):
outputRecord()
logger.info("All done")