forked from mit-plv/koika
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCircuitOptimization.v
662 lines (576 loc) · 25.6 KB
/
CircuitOptimization.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
(*! Circuits | Local optimization of circuits !*)
Require Export Koika.Common Koika.Environments Koika.CircuitSemantics Koika.PrimitiveProperties.
Import PrimTyped CircuitSignatures.
Section CircuitOptimizer.
Context {rule_name_t reg_t ext_fn_t: Type}.
Context {CR: reg_t -> nat}.
Context {CSigma: ext_fn_t -> CExternalSignature}.
Context {rwdata: nat -> Type}.
Notation Circuit := circuit.
Notation circuit := (circuit (rule_name_t := rule_name_t) (rwdata := rwdata) CR CSigma).
Context (csigma: forall f, CSig_denote (CSigma f)).
Record local_circuit_optimizer :=
{ lco_fn :> forall {sz}, circuit sz -> circuit sz;
lco_proof: forall {REnv: Env reg_t} (cr: REnv.(env_t) (fun idx => bits (CR idx))) {sz} (c: circuit sz),
interp_circuit cr csigma (lco_fn c) =
interp_circuit cr csigma c }.
Definition lco_opt_compose
(o1 o2: forall {sz}, circuit sz -> circuit sz) sz (c: circuit sz) :=
o2 (o1 c).
Definition lco_compose (l1 l2: local_circuit_optimizer) :=
{| lco_fn := @lco_opt_compose (l1.(@lco_fn)) (l2.(@lco_fn));
lco_proof := ltac:(abstract (intros; unfold lco_opt_compose;
cbn; rewrite !lco_proof; reflexivity)) |}.
Section Utils.
Context {REnv: Env reg_t}.
Context {cr: REnv.(env_t) (fun idx => bits (CR idx))}.
Lemma interp_circuit_cast {sz sz'}:
forall (h: sz = sz') (c: circuit sz),
interp_circuit cr csigma (rew h in c) = rew h in (interp_circuit cr csigma c).
Proof. destruct h; reflexivity. Defined.
Fixpoint unannot {sz} (c: circuit sz) : circuit sz :=
match c with
| CAnnot _ c => unannot c
| c => c
end.
Lemma unannot_sound {sz} :
forall (c: circuit sz),
interp_circuit (REnv := REnv) cr csigma (unannot c) =
interp_circuit (REnv := REnv) cr csigma c.
Proof. induction c; eauto. Qed.
Definition asconst {sz} (c: circuit sz) : option (bits sz) :=
match unannot c with
| CConst cst => Some cst
| _ => None
end.
Definition isconst {sz} (c: circuit sz) (cst: bits sz) :=
match asconst c with
| Some cst' => beq_dec cst cst'
| None => false
end.
Lemma asconst_Some :
forall {sz} (c: circuit sz) bs,
asconst c = Some bs ->
interp_circuit cr csigma c = bs.
Proof.
induction c; intros b Heq;
repeat match goal with
| _ => progress cbn in *
| _ => discriminate
| _ => reflexivity
| [ H: Some _ = Some _ |- _ ] => inversion H; subst; clear H
| [ sz: nat |- _ ] => destruct sz; try (tauto || discriminate); []
end.
apply IHc; eassumption.
Qed.
Lemma isconst_correct {sz} :
forall (c: circuit sz) cst,
isconst c cst = true ->
interp_circuit cr csigma c = cst.
Proof.
unfold isconst; intros * Htrue; destruct (asconst c) eqn:Heq.
- apply asconst_Some in Heq; rewrite beq_dec_iff in Htrue; congruence.
- congruence.
Qed.
End Utils.
Ltac unannot_rew :=
repeat match goal with
| [ Heq: unannot ?c = _ |- context[interp_circuit _ _ ?c] ] =>
rewrite <- (unannot_sound c), Heq; cbn
end.
Ltac asconst_t :=
match goal with
| [ |- context[match ?opt with _ => _ end] ] =>
match opt with
| context[asconst _] => destruct opt as [ | ] eqn:?
| context[@isconst ?sz ?bs ?cst] => destruct (@isconst sz bs cst) eqn:?
end
| [ cr: env_t _ _, H: asconst ?c = Some ?bs |- _ ] => apply (asconst_Some (cr := cr) c bs) in H
| [ cr: env_t _ _, H: isconst ?c ?bs = true |- _ ] => apply (isconst_correct (cr := cr) c bs) in H
end.
Infix "~~" := isconst (at level 7).
Section Iterated.
Context (equivb: forall {sz}, circuit sz -> circuit sz -> bool).
Fixpoint lco_opt_iter
(o: forall {sz}, circuit sz -> circuit sz)
(fuel: nat) sz (c: circuit sz) :=
match fuel with
| 0 => c
| S fuel => let c' := o c in if equivb _ c c' then c else lco_opt_iter (@o) fuel _ c'
end.
Definition lco_iter (l: local_circuit_optimizer) (fuel: nat) :=
{| lco_fn := lco_opt_iter (l.(@lco_fn)) fuel;
lco_proof := ltac:(abstract (induction fuel; cbn; intros;
[ | destruct equivb; try rewrite IHfuel, lco_proof ];
auto)) |}.
End Iterated.
Section Equiv.
(** This pass performs the following simplifications:
Or(c, c) -> c
And(c, c) -> c
Mux(_, c, c) → c1
Mux(k, Mux(k', c2, c12), c2) → Mux(k && ~k', c12, c2 )
Mux(k, Mux(k', c11, c2), c2) → Mux(k && k', c11, c2 )
Mux(k, c1, Mux(k', c1, c22)) → Mux(k || k', c1 , c22)
Mux(k, c1, Mux(k', c21, c1)) → Mux(k || ~k', c1 , c21)
Mux(k, Mux(k, c11, c12), c2) → Mux(k, c11, c2)
Mux(k, c1, Mux(k, c21, c22)) → Mux(k, c1, c22)
[equivb] needs to be sound, but does not need to be complete
(comparing two circuits can be very costly). **)
Context (equivb: forall {sz}, circuit sz -> circuit sz -> bool).
Context (equivb_sound: forall {REnv: Env reg_t} (cr: REnv.(env_t) (fun idx => bits (CR idx)))
{sz} (c1 c2: circuit sz),
equivb _ c1 c2 = true ->
interp_circuit cr csigma c1 = interp_circuit cr csigma c2).
Context {REnv: Env reg_t}.
Context (cr: REnv.(env_t) (fun idx => bits (CR idx))).
Notation equivb_unannot c1 c2 := (equivb _ (unannot c1) (unannot c2)).
Lemma equivb_unannot_sound :
forall {sz} (c1 c2: circuit sz),
equivb_unannot c1 c2 = true ->
interp_circuit cr csigma c1 = interp_circuit cr csigma c2.
Proof.
intros * H%(equivb_sound _ cr).
rewrite <- (unannot_sound c1), <- (unannot_sound c2); assumption.
Qed.
Definition opt_identical {sz} (c: circuit sz): circuit sz :=
let keep_first {sz} (c1 c2: circuit sz) (c0: circuit sz) :=
if equivb_unannot c1 c2 then c1 else c0 in
match c in Circuit _ _ sz return circuit sz -> circuit sz with
| CMux k c1 c2 => fun c0 => keep_first c1 c2 c0
| CAnd c1 c2 => fun c0 => keep_first c1 c2 c0
| COr c1 c2 => fun c0 => keep_first c1 c2 c0
| _ => fun c0 => c0
end c.
Arguments Bits.and : simpl never.
Arguments Bits.or : simpl never.
Lemma opt_identical_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_identical c) = interp_circuit cr csigma c.
Proof.
destruct c; cbn; try destruct fn; try reflexivity;
destruct equivb eqn:Hequivb; cbn;
repeat match goal with
| _ => progress bool_simpl
| [ |- context[if ?x then _ else _] ] => destruct x
| [ H: equivb_unannot _ _ = true |- _ ] => apply equivb_unannot_sound in H
| [ H: _ = _ |- _ ] => rewrite H
| _ => auto
end.
Qed.
Definition opt_muxelim_redundant_l {sz} (c: circuit sz): circuit sz :=
let annot {sz} (c: circuit sz) := (* CAnnot "simplified_mux" c *) c in
match c in Circuit _ _ sz return circuit sz -> circuit sz with
| CMux k c1 c2 =>
fun c =>
match unannot c1 in Circuit _ _ sz return circuit sz -> circuit sz -> circuit sz with
| CMux k' c11 c12 =>
fun c c2 =>
if equivb_unannot k k' then
(* Mux(k, Mux(k, c11, c12), c2) *)
annot (CMux k c11 c2)
else c
| _ =>
fun c c2 => c
end c c2
| _ => fun c => c
end c.
Definition opt_muxelim_redundant_r {sz} (c: circuit sz): circuit sz :=
let annot {sz} (c: circuit sz) := (* CAnnot "simplified_mux" c *) c in
match c in Circuit _ _ sz return circuit sz -> circuit sz with
| CMux k c1 c2 =>
fun c =>
match unannot c2 in Circuit _ _ sz return circuit sz -> circuit sz -> circuit sz with
| CMux k' c21 c22 =>
fun c c1 =>
if equivb_unannot k k' then
(* Mux(k, c1, Mux(k, c21, c22)) *)
annot (CMux k c1 c22)
else c
| _ =>
fun c c1 => c
end c c1
| _ => fun c => c
end c.
Definition opt_muxelim_nested_l {sz} (c: circuit sz): circuit sz :=
let annot {sz} (c: circuit sz) := (* CAnnot "nested_mux" c *) c in
match c in Circuit _ _ sz return circuit sz -> circuit sz with
| CMux k c1 c2 =>
fun c =>
match unannot c1 in Circuit _ _ sz return circuit sz -> circuit sz -> circuit sz with
| CMux k' c11 c12 =>
fun c c2 =>
if equivb_unannot c11 c2 then
(* Mux(k, Mux(k', c2, c12), c2) *)
CMux (annot (CAnd k (CNot k'))) c12 c2
else if equivb_unannot c12 c2 then
(* Mux(k, Mux(k', c11, c2), c2) *)
CMux (annot (CAnd k k')) c11 c2
else c
| _ =>
fun c c2 => c
end c c2
| _ => fun c => c
end c.
Definition opt_muxelim_nested_r {sz} (c: circuit sz): circuit sz :=
let annot {sz} (c: circuit sz) := (* CAnnot "nested_mux" c *) c in
match c in Circuit _ _ sz return circuit sz -> circuit sz with
| CMux k c1 c2 =>
fun c =>
match unannot c2 in Circuit _ _ sz return circuit sz -> circuit sz -> circuit sz with
| CMux k' c21 c22 =>
fun c c1 =>
if equivb_unannot c1 c21 then
(* Mux(k, c1, Mux(k', c1, c22)) *)
CMux (annot (COr k k')) c1 c22
else if equivb_unannot c1 c22 then
(* Mux(k, c1, Mux(k', c21, c1)) *)
CMux (annot (COr k (CNot k'))) c1 c21
else c
| _ =>
fun c c1 => c
end c c1
| _ => fun c => c
end c.
Ltac mux_elim_nested_step :=
match goal with
| _ => reflexivity
| _ => congruence
| _ => progress (intros || simpl)
| [ |- context[match ?c with _ => _ end] ] =>
match type of c with circuit _ => destruct c eqn:? end
| [ |- context[if equivb_unannot ?c ?c' then _ else _] ] =>
destruct (equivb_unannot c c') eqn:?
| [ Heq: unannot ?c = _ |- context[interp_circuit _ _ ?c] ] =>
rewrite <- (unannot_sound c), Heq
| [ |- context[Bits.single ?c] ] =>
destruct c as ([ | ] & []) eqn:?
| [ H: equivb_unannot ?c ?c' = true |- _ ] => apply equivb_unannot_sound in H
end.
Lemma opt_muxelim_redundant_l_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_muxelim_redundant_l c) = interp_circuit cr csigma c.
Proof.
unfold opt_muxelim_redundant_l; repeat mux_elim_nested_step.
Qed.
Lemma opt_muxelim_redundant_r_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_muxelim_redundant_r c) = interp_circuit cr csigma c.
Proof.
unfold opt_muxelim_redundant_r; repeat mux_elim_nested_step.
Qed.
Lemma opt_muxelim_nested_l_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_muxelim_nested_l c) = interp_circuit cr csigma c.
Proof.
unfold opt_muxelim_nested_l; repeat mux_elim_nested_step.
Qed.
Lemma opt_muxelim_nested_r_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_muxelim_nested_r c) = interp_circuit cr csigma c.
Proof.
unfold opt_muxelim_nested_r; repeat mux_elim_nested_step.
Qed.
Definition opt_muxelim {sz} :=
@lco_opt_compose
(lco_opt_compose (@opt_muxelim_redundant_l) (@opt_muxelim_redundant_r))
(lco_opt_compose (@opt_muxelim_nested_l) (@opt_muxelim_nested_r))
sz.
Lemma opt_muxelim_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_muxelim c) = interp_circuit cr csigma c.
Proof.
intros; unfold opt_muxelim, lco_opt_compose.
rewrite opt_muxelim_nested_r_sound, opt_muxelim_nested_l_sound,
opt_muxelim_redundant_r_sound, opt_muxelim_redundant_l_sound;
reflexivity.
Qed.
End Equiv.
Section ConstProp.
Context {REnv: Env reg_t}.
Context (cr: REnv.(env_t) (fun idx => bits (CR idx))).
(** This pass performs the following simplifications:
Not(1) => 0
Not(0) => 1
And(_, 0) | And(0, _) => 0
And(c, 1) | And(1, c) => c
Or(_, 1) | Or(1, _) => 1
Or(c, 0) | Or(0, c) => c
Mux(0, x, y) => x
Mux(1, x, y) => y *)
Notation b1 := (Bits.ones _).
Notation b0 := (Bits.zeroes _).
Definition opt_constprop' {sz} (c: circuit sz): circuit sz :=
match unannot c in Circuit _ _ sz return circuit sz -> circuit sz with
| CNot c =>
match asconst c with
| Some cst => fun _ => CConst (Bits.neg cst)
| c => fun c0 => c0
end
| CAnd c1 c2 =>
if c1 ~~ b0 || c2 ~~ b0 then fun c0 => CConst b0
else if c1 ~~ b1 then fun c0 => c2
else if c2 ~~ b1 then fun c0 => c1
else fun c0 => c0
| COr c1 c2 =>
if c1 ~~ b1 || c2 ~~ b1 then fun c0 => CConst b1
else if c1 ~~ b0 then fun c0 => c2
else if c2 ~~ b0 then fun c0 => c1
else fun c0 => c0
| CMux select c1 c2 =>
if select ~~ b1 then fun _ => c1
else if select ~~ b0 then fun _ => c2
else fun c0 => c0
| _ => fun c0 => c0
end c.
(** This pass performs the following simplification:
Mux(c, 1, 0) => c
Mux(c, 0, 1) => Not(c)
Mux(c, 1, x) => Or(c, x)
Mux(c, x, 0) => And(c, x) *)
Notation ltrue := {| vhd := true; vtl := _vect_nil |}.
Notation lfalse := {| vhd := false; vtl := _vect_nil |}.
Definition opt_mux_bit1 {sz} (c: circuit sz): circuit sz :=
match unannot c in Circuit _ _ sz return circuit sz -> circuit sz with
| @CMux _ _ _ _ _ _ n s c1 c2 =>
fun c0 =>
match n return Circuit _ _ n -> Circuit _ _ n -> Circuit _ _ n -> Circuit _ _ n with
| 1 => fun c0 c1 c2 =>
let annot {sz} (c: circuit sz) := (* CAnnot "optimized_mux" c *) c in
match asconst c1, asconst c2 with
| Some ltrue, Some lfalse => annot s
| Some ltrue, _ => annot (COr s c2)
| Some lfalse, Some ltrue => annot (CNot s)
(* FIXME: these two increase the circuit size *)
(* | Some lfalse, _ => annot (CAnd (CNot s) c2) *)
(* | _, Some ltrue => annot (COr (CNot s) c1) *)
| _, Some lfalse => annot (CAnd s c1)
| _, _ => c0
end
| _ => fun c0 c1 c2 => c0
end c0 c1 c2
| _ => fun c0 => c0
end c.
Definition opt_constprop {sz} (c: circuit sz): circuit sz :=
match sz as n return (circuit n -> circuit n) with
| 0 => fun c => CConst Bits.nil
| _ => fun c => opt_mux_bit1 (opt_constprop' c)
end c.
Arguments opt_constprop sz !c : assert.
Arguments Bits.and : simpl never.
Arguments Bits.or : simpl never.
Lemma opt_constprop'_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_constprop' c) = interp_circuit cr csigma c.
Proof.
unfold opt_constprop'; intros; destruct (unannot c) eqn:?; cbn.
Ltac t := match goal with
| _ => reflexivity
| _ => progress bool_simpl || bool_step || cleanup_step || unannot_rew || cbn in *
| [ fn : fbits1 |- _ ] => destruct fn
| [ fn : fbits2 |- _ ] => destruct fn
| _ => asconst_t
| [ H: ?x = _ |- context[?x] ] => rewrite H
| [ H: _ \/ _ |- _ ] => destruct H
| _ => eauto
end.
all: repeat t.
Qed.
Lemma opt_mux_bit1_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_mux_bit1 c) = interp_circuit cr csigma c.
Proof.
unfold opt_mux_bit1; intros; destruct (unannot c) eqn:?; cbn;
simpl; try reflexivity; [].
destruct sz as [ | [ | ] ]; simpl; unannot_rew; try reflexivity; [].
destruct (asconst c0_2) as [ ([ | ] & []) | ] eqn:Hc2; try reflexivity;
destruct (asconst c0_3) as [ ([ | ] & []) | ] eqn:Hc3;
unannot_rew; try reflexivity.
all: repeat
match goal with
| _ => progress (cbn in * || subst || bool_simpl || asconst_t)
| [ H: interp_circuit _ _ _ = _ |- _ ] => rewrite H
| [ |- context[interp_circuit _ _ ?c] ] => destruct (interp_circuit _ _ c) as ([ | ] & [])
| _ => reflexivity || discriminate
end.
Qed.
Lemma opt_constprop_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_constprop c) = interp_circuit cr csigma c.
Proof.
unfold opt_constprop; destruct sz.
- cbn; intros.
destruct interp_circuit; reflexivity.
- intros; rewrite opt_mux_bit1_sound, opt_constprop'_sound; reflexivity.
Qed.
End ConstProp.
Section Simplify.
Context {REnv: Env reg_t}.
Context (cr: REnv.(env_t) (fun idx => bits (CR idx))).
(** This pass performs the following simplification:
c[0 +: |c|] => c
{c, 0b}, {0b, c} => c
c[0b] => c (when c has size 1)
{c1, c2}[0 +: |c1|] => c1
{c1, c2}[|c1| +: |c1|] => c2
c == 0b~1, 0b~1 == c => c
c != 0b~0, 0b~0 != c => c
c == 0b~0, 0b~0 == c => Not(c)
c != 0b~1, 0b~1 != c => Not(c)
(Pushing all slices down concatenations would be better, but it's hard
to do non-recursively) *)
Definition opt_simplify {sz} (c: circuit sz): circuit sz :=
match unannot c in Circuit _ _ sz return circuit sz -> circuit sz with
| CUnop (Slice sz offset width) c =>
match eq_dec offset 0, eq_dec sz width with
| left _, left pr_width => fun _ => rew pr_width in c
| _, _ => match unannot c with
| CBinop (Concat sz1 sz2) c1 c2 =>
match eq_dec offset 0, eq_dec sz2 width with
| left _, left pr_width => fun _ => rew pr_width in c2
| _, _ => match eq_dec offset sz2, eq_dec sz1 width with
| left _, left pr_width => fun _ => rew pr_width in c1
| _, _ => fun c0 => c0
end
end
| _ => fun c0 => c0
end
end
| CNot c =>
match unannot c with
| CNot c' => fun _ => c'
| _ => fun c0 => c0
end
| CBinop (Sel sz) c1 offset =>
match eq_dec sz 1 with
| left pr_width => fun _ => rew pr_width in c1
| right _ => fun c0 => c0
end
| CBinop (Concat sz1 sz2) c1 c2 =>
match eq_dec sz1 0, eq_dec sz2 0 with
| left pr, _ => fun _ => rew <- [fun sz => circuit (sz2 + sz)] pr in rew <- plus_0_r sz2 in c2
| _, left pr => fun _ => rew <- [fun sz => circuit (sz + sz1)] pr in (c1: circuit (0 + sz1))
| _, _ => fun c0 => c0
end
| CBinop (EqBits 1 false) c1 c2 =>
if c1 ~~ Ob~1 then fun _ => c2
else if c1 ~~ Ob~0 then fun _ => CNot c2
else if c2 ~~ Ob~1 then fun _ => c1
else if c2 ~~ Ob~0 then fun _ => CNot c1
else fun c0 => c0
| CBinop (EqBits 1 true) c1 c2 =>
if c1 ~~ Ob~0 then fun _ => c2
else if c1 ~~ Ob~1 then fun _ => CNot c2
else if c2 ~~ Ob~0 then fun _ => c1
else if c2 ~~ Ob~1 then fun _ => CNot c1
else fun c0 => c0
| _ => fun c0 => c0
end c.
Lemma opt_simplify_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_simplify c) = interp_circuit cr csigma c.
Proof.
Ltac simpl_t :=
match goal with
| _ => reflexivity
| _ => progress (cbn in * || subst || unannot_rew || asconst_t || unfold eq_rect_r)
| [ |- context[match ?x with _ => _ end] ] => destruct x eqn:?
| [ H: _ = _ |- _ ] => rewrite H
| [ |- context[rew ?h in _] ] => rewrite interp_circuit_cast || destruct h
| [ |- context[interp_circuit ?cr ?csigma (n := 1) ?c] ] =>
destruct (interp_circuit cr csigma c) as [ [ | ] [] ]
| _ => rewrite vect_app_nil
| _ => apply eq_rect_eqdec_irrel
| _ => eauto using slice_full, slice_concat_l, slice_concat_r, Bits.neg_involutive
end.
unfold opt_simplify; intros; destruct (unannot c) eqn:? ;
try destruct fn; repeat simpl_t.
Qed.
End Simplify.
Section PartialEval.
Context {REnv: Env reg_t}.
Context (cr: REnv.(env_t) (fun idx => bits (CR idx))).
Definition opt_partialeval {sz} (c: circuit sz): circuit sz :=
match unannot c in Circuit _ _ sz return circuit sz -> circuit sz with
| CUnop f c =>
match asconst c with
| Some v => fun _ => CConst (CircuitPrimSpecs.sigma1 f v)
| None => fun c0 => c0
end
| CBinop f c1 c2 =>
match asconst c1, asconst c2 with
| Some v1, Some v2 => fun _ => CConst (CircuitPrimSpecs.sigma2 f v1 v2)
| _, _ => fun c0 => c0
end
| _ => fun c0 => c0
end c.
Lemma opt_partialeval_sound :
forall {sz} (c: circuit sz),
interp_circuit cr csigma (opt_partialeval c) = interp_circuit cr csigma c.
Proof.
unfold opt_partialeval; intros; destruct (unannot c) eqn:? ;
try destruct fn;
repeat match goal with
| _ => reflexivity
| _ => progress (cbn || subst || unannot_rew || asconst_t)
end.
Qed.
End PartialEval.
End CircuitOptimizer.
Arguments unannot {rule_name_t reg_t ext_fn_t CR CSigma rwdata} [sz] c : assert.
Arguments unannot_sound {rule_name_t reg_t ext_fn_t CR CSigma rwdata} csigma [REnv] cr [sz] c : assert.
Arguments opt_constprop {rule_name_t reg_t ext_fn_t CR CSigma rwdata} [sz] c : assert.
Arguments opt_constprop_sound {rule_name_t reg_t ext_fn_t CR CSigma rwdata} csigma [REnv] cr [sz] c : assert.
Arguments opt_identical {rule_name_t reg_t ext_fn_t CR CSigma rwdata} equivb [sz] c : assert.
Arguments opt_identical_sound {rule_name_t reg_t ext_fn_t CR CSigma rwdata} csigma {equivb} equivb_sound [REnv] cr [sz] c : assert.
Arguments opt_muxelim {rule_name_t reg_t ext_fn_t CR CSigma rwdata} equivb [sz] c : assert.
Arguments opt_muxelim_sound {rule_name_t reg_t ext_fn_t CR CSigma rwdata} csigma {equivb} equivb_sound [REnv] cr [sz] c : assert.
Arguments opt_simplify {rule_name_t reg_t ext_fn_t CR CSigma rwdata} [sz] c : assert.
Arguments opt_simplify_sound {rule_name_t reg_t ext_fn_t CR CSigma rwdata} csigma [REnv] cr [sz] c : assert.
Arguments opt_partialeval {rule_name_t reg_t ext_fn_t CR CSigma rwdata} [sz] c : assert.
Arguments opt_partialeval_sound {rule_name_t reg_t ext_fn_t CR CSigma rwdata} csigma [REnv] cr [sz] c : assert.
Arguments lco_fn {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} l [sz] c : assert.
Arguments lco_proof {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} l {REnv} cr [sz] c : assert.
Arguments lco_compose {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} l1 l2 : assert.
Arguments lco_iter {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} equivb l fuel : assert.
Section LCO.
Context {rule_name_t reg_t ext_fn_t: Type}.
Context {CR: reg_t -> nat}.
Context {CSigma: ext_fn_t -> CExternalSignature}.
Context {rwdata: nat -> Type}.
Context (csigma: forall f, CSig_denote (CSigma f)).
Notation lco := (@local_circuit_optimizer rule_name_t _ _ CR _ rwdata csigma).
Definition lco_unannot : lco :=
{| lco_fn := unannot;
lco_proof := unannot_sound csigma |}.
Definition lco_constprop : lco :=
{| lco_fn := opt_constprop;
lco_proof := opt_constprop_sound csigma |}.
Definition lco_identical equivb equivb_sound : lco :=
{| lco_fn := opt_identical equivb;
lco_proof := opt_identical_sound csigma equivb_sound |}.
Definition lco_muxelim equivb equivb_sound : lco :=
{| lco_fn := opt_muxelim equivb;
lco_proof := opt_muxelim_sound csigma equivb_sound |}.
Definition lco_simplify : lco :=
{| lco_fn := opt_simplify;
lco_proof := opt_simplify_sound csigma |}.
Definition lco_partialeval : lco :=
{| lco_fn := opt_partialeval;
lco_proof := opt_partialeval_sound csigma |}.
Definition lco_all equivb equivb_sound : lco :=
lco_compose lco_constprop
(lco_compose (lco_identical equivb equivb_sound)
(lco_compose (lco_muxelim equivb equivb_sound)
(lco_compose lco_simplify lco_partialeval))).
Definition lco_all_iterated equivb equivb_sound fuel : lco :=
lco_iter equivb (lco_all equivb equivb_sound) fuel.
End LCO.
Arguments lco_unannot {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} : assert.
Arguments lco_constprop {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} : assert.
Arguments lco_identical {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} {equivb} equivb_sound : assert.
Arguments lco_muxelim {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} {equivb} equivb_sound : assert.
Arguments lco_simplify {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} : assert.
Arguments lco_partialeval {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} : assert.
Arguments lco_all {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} {equivb} equivb_sound : assert.
Arguments lco_all_iterated {rule_name_t reg_t ext_fn_t CR CSigma rwdata csigma} {equivb} equivb_sound fuel : assert.