forked from mit-plv/koika
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MultiplierCorrectness.v
375 lines (348 loc) · 13.2 KB
/
MultiplierCorrectness.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
(*! Proof of correctness of the multiplier module !*)
Require Import Koika.Frontend Koika.Std Koika.ProgramTactics.
Require Export rv.Multiplier.
Require Import Lia.
Module MultiplierProofs.
Module Sig32 <: Multiplier_sig.
Definition n := 32.
End Sig32.
Module mul32 := ShiftAddMultiplier Sig32.
Import mul32.
Import Sig32.
Definition default := ContextEnv.(create) r.
Definition typed_enq :=
tc_function R empty_Sigma enq.
Definition typed_step :=
tc_function R empty_Sigma step.
Definition typed_deq :=
tc_function R empty_Sigma deq.
Notation all_regs :=
[valid; operand1; operand2; result; n_step; finished].
Definition partial_mul (a b n_step: N) :=
(a * (b mod (2 ^ n_step)))%N.
Lemma mod_succ_add (a n: N) :
(a mod (2 ^ N.succ n) = a mod 2 ^ n + (N.b2n (N.testbit a n)) * 2 ^ n)%N.
Proof.
rewrite N.pow_succ_r'.
rewrite (N.div_mod' a (2 ^ n)) at 1.
rewrite N.testbit_spec'.
rewrite N.add_mod by (destruct n; cbn; lia).
rewrite (N.mul_comm 2 (2 ^ n)).
rewrite N.mul_mod_distr_l by (destruct n; cbn; lia).
rewrite (N.mod_small (a mod 2 ^ n)).
- rewrite N.mod_small; [ ring | ].
eapply N.le_lt_trans.
+ apply N.add_le_mono.
* apply N.mul_le_mono_l, N.lt_le_pred.
apply N.mod_upper_bound. lia.
* apply N.lt_le_pred, N.mod_lt. destruct n; cbn; lia.
+ cbn. rewrite N.mul_1_r. rewrite N.pred_sub.
enough (2 ^ n > 0)%N by lia.
destruct n; cbn; lia.
- eapply N.lt_trans.
+ apply N.mod_lt.
destruct n; discriminate.
+ rewrite <-(N.mul_1_r (2 ^ n)) at 1.
apply N.mul_lt_mono_pos_l; destruct n; cbn; lia.
Qed.
Lemma partial_mul_step (a b n_step: N) :
partial_mul a b (N.succ n_step) =
((partial_mul a b n_step) +
a * (N.b2n (N.testbit b n_step) * (2 ^ n_step)))%N.
Proof.
unfold partial_mul.
rewrite mod_succ_add.
ring.
Qed.
Lemma mul_to_partial_mul :
forall n x y,
(y < 2 ^ n)%N ->
(x * y = partial_mul x y n)%N.
Proof.
intros.
unfold partial_mul.
rewrite N.mod_small; auto.
Qed.
Definition step_invariant (reg: ContextEnv.(env_t) R) :=
(Bits.to_N (ContextEnv.(getenv) reg n_step) < N.of_nat n)%N.
Definition finished_invariant (reg: ContextEnv.(env_t) R) :=
let valid_val := Bits.to_N (ContextEnv.(getenv) reg valid) in
let finished_val := Bits.to_N (ContextEnv.(getenv) reg finished) in
valid_val = 0%N -> finished_val = 0%N.
Definition result_invariant (reg: ContextEnv.(env_t) R) :=
let valid_val := Bits.to_N (ContextEnv.(getenv) reg valid) in
let finished_val := Bits.to_N (ContextEnv.(getenv) reg finished) in
let result_val := Bits.to_N (ContextEnv.(getenv) reg result) in
let op1_val := Bits.to_N (ContextEnv.(getenv) reg operand1) in
let op2_val := Bits.to_N (ContextEnv.(getenv) reg operand2) in
let n_step_val := Bits.to_N (ContextEnv.(getenv) reg n_step) in
valid_val = 1%N ->
finished_val = 0%N ->
result_val = partial_mul op1_val op2_val n_step_val.
Definition result_finished_invariant (reg: ContextEnv.(env_t) R) :=
let finished_val := Bits.to_N (ContextEnv.(getenv) reg finished) in
let result_val := Bits.to_N (ContextEnv.(getenv) reg result) in
let op1_val := Bits.to_N (ContextEnv.(getenv) reg operand1) in
let op2_val := Bits.to_N (ContextEnv.(getenv) reg operand2) in
finished_val = 1%N ->
(result_val = op1_val * op2_val)%N.
Definition invariant reg :=
step_invariant reg /\
finished_invariant reg /\
result_invariant reg /\
result_finished_invariant reg.
(** Interpret all possible branches of an action **)
Lemma enq_preserves_invariant :
forall env Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_enq =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log all_regs ->
invariant (commit_update env sched_log) ->
invariant (commit_update env (log_app action_log_new sched_log)).
Proof.
intros.
unfold invariant, step_invariant, finished_invariant,
result_invariant, result_finished_invariant in *.
interp_action_all_t.
Bits_to_N_t.
repeat (split).
- discriminate.
- intros.
unfold partial_mul. cbn.
rewrite N.mod_1_r.
ring.
- intros.
match goal with
| [ H1: ?x = ?y, H2: _ -> ?x = ?z |- _ ] =>
rewrite H2 in H1 by auto
end.
discriminate.
Qed.
Lemma deq_preserves_invariant :
forall env Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_deq =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log all_regs ->
invariant (commit_update env sched_log) ->
invariant (commit_update env (log_app action_log_new sched_log)).
Proof.
intros.
unfold invariant, step_invariant, finished_invariant, result_invariant in *.
interp_action_all_t.
Bits_to_N_t.
repeat (split); auto || discriminate.
Qed.
Lemma step_preserves_finished_invariant :
forall env Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_step =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log all_regs ->
invariant (commit_update env sched_log) ->
finished_invariant (commit_update env (log_app action_log_new sched_log)).
Proof.
intros.
unfold invariant, step_invariant, finished_invariant, result_invariant in *.
interp_action_all_t;
Bits_to_N_t;
intros;
match goal with
| [H1: ?x = ?y, H2: ?x = ?z |- _ ] => rewrite H1 in H2; discriminate H2
end.
Qed.
Lemma step_preserves_step_invariant :
forall env Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_step =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log all_regs ->
invariant (commit_update env sched_log) ->
step_invariant (commit_update env (log_app action_log_new sched_log)).
Proof.
intros.
unfold invariant, step_invariant, finished_invariant, result_invariant in *.
interp_action_all_t;
Bits_to_N_t; try (assumption);
rewrite Bits.to_N_of_N_lt;
lia_bits.
Qed.
Lemma step_preserves_result_invariant :
forall env Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_step =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log all_regs ->
no_latest_writes sched_log all_regs ->
invariant (commit_update env sched_log) ->
result_invariant (commit_update env (log_app action_log_new sched_log)).
Proof.
intros.
unfold invariant, step_invariant, finished_invariant, result_invariant in *.
interp_action_all_t;
intros;
Bits_to_N_t;
unfold n in *;
try discriminate.
match goal with
| [ H: context[_ = partial_mul _ _ _] |- _ ] =>
setoid_rewrite H; try assumption
end; cbn in *.
- rewrite Bits.to_N_of_N_lt.
+ rewrite Bits.to_N_of_N_lt by lia_bits.
cbn. rewrite_all_hypotheses. cbn.
rewrite N.add_1_r.
rewrite partial_mul_step.
rewrite_all_hypotheses.
f_equal. cbn [N.b2n].
rewrite N.mod_small. ring.
assert (2 ^ 32 * 2 ^ 32 = 18446744073709551616)%N as Hdouble32 by reflexivity.
rewrite <-Hdouble32.
apply N.mul_lt_mono.
* lia_bits.
* apply N.pow_lt_mono_r; lia_bits.
+ unfold partial_mul.
assert (2 ^ 63 + 2 ^ 63 = 18446744073709551616)%N as Hdouble63 by reflexivity.
cbn. rewrite <-Hdouble63 at -1.
assert (2 ^ 32 * 2 ^ 31 = 2 ^ 63)%N as H2pow3231 by reflexivity.
rewrite <-H2pow3231.
pose_bits_bound_proofs.
remember_bits_to_N.
apply N.add_lt_le_mono.
* apply N.mul_lt_mono.
-- lia_bits.
-- eapply N.lt_le_trans.
++ apply N.mod_lt.
match goal with
| [ |- context[(2 ^ ?x)%N] ] => destruct x; discriminate
end.
++ apply N.pow_le_mono_r; lia_bits.
* eapply N.le_trans.
-- apply N.mod_le. discriminate.
-- apply N.mul_le_mono.
++ lia_bits.
++ apply N.pow_le_mono_r; lia_bits.
- rewrite Bits.to_N_of_N_lt by lia_bits.
cbn. rewrite N.add_1_r.
rewrite partial_mul_step.
setoid_rewrite_all_hypotheses. cbn.
rewrite N.mul_0_r. rewrite N.add_0_r.
auto.
Qed.
Lemma step_preserves_result_finished_invariant :
forall env Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_step =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log all_regs ->
no_latest_writes sched_log all_regs ->
invariant (commit_update env sched_log) ->
result_finished_invariant (commit_update env (log_app action_log_new sched_log)).
Proof.
intros.
unfold invariant, step_invariant, finished_invariant, result_invariant, result_finished_invariant in *.
interp_action_all_t;
intros;
Bits_to_N_t;
unfold n in *;
try match goal with
| [ H1: ?x = ?y, H2: ?x = ?z |- _ ] =>
rewrite H1 in H2; discriminate H2
end;
match goal with
| [ H: context[_ = partial_mul _ _ _] |- _ ] =>
setoid_rewrite H; try assumption
end;
cbn in *.
- rewrite_all_hypotheses.
rewrite Bits.to_N_of_N_lt.
+ rewrite N.mod_small by lia_bits.
rewrite (mul_to_partial_mul (N.of_nat n) (Bits.to_N _) (Bits.to_N _)) by lia_bits.
cbn.
assert (32 = 31 + 1)%N as H32S by reflexivity.
rewrite H32S.
rewrite N.add_1_r, partial_mul_step.
repeat (f_equal; []).
match goal with
| [ H1: ?x = ?y, H2: context[N.testbit _ _] |- _ ] =>
rewrite H1 in H2
end.
rewrite_all_hypotheses.
reflexivity.
+ unfold partial_mul.
assert (2 ^ 63 + 2 ^ 63 = 18446744073709551616)%N as Hdouble63 by reflexivity.
cbn. rewrite <-Hdouble63 at -1.
assert (2 ^ 32 * 2 ^ 31 = 2 ^ 63)%N as H2pow3231 by reflexivity.
rewrite <-H2pow3231.
apply N.add_lt_le_mono.
* apply N.mul_lt_mono; [lia_bits | ].
apply N.mod_lt. discriminate.
* eapply N.le_trans; [ apply N.mod_le; discriminate | ].
apply N.mul_le_mono; lia_bits.
- rewrite_all_hypotheses.
rewrite (mul_to_partial_mul (N.of_nat n)) by lia_bits.
cbn.
assert (32 = 31 + 1)%N as H32S by reflexivity.
rewrite H32S.
rewrite N.add_1_r, partial_mul_step.
repeat (f_equal; []).
match goal with
| [ H1: ?x = ?y, H2: context[N.testbit _ _] |- _ ] =>
rewrite H1 in H2
end.
rewrite_all_hypotheses. cbn.
rewrite N.mul_0_r. rewrite N.add_0_r.
reflexivity.
Qed.
Lemma step_preserves_invariants :
forall env Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_step =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log all_regs ->
no_latest_writes sched_log all_regs ->
invariant (commit_update env sched_log) ->
invariant (commit_update env (log_app action_log_new sched_log)).
Proof.
intros.
repeat split.
- eapply step_preserves_step_invariant; eassumption.
- eapply step_preserves_finished_invariant; eassumption.
- eapply step_preserves_result_invariant; eassumption.
- eapply step_preserves_result_finished_invariant; eassumption.
Qed.
Lemma enq_set_operands :
forall (env: ContextEnv.(env_t) R) Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_enq =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log [operand1; operand2] ->
latest_write action_log_new operand1 = Some (chd Gamma) /\
latest_write action_log_new operand2 = Some (chd (ctl Gamma)).
Proof.
intros.
interp_action_all_t.
auto.
Qed.
Lemma step_keep_operands :
forall (env: ContextEnv.(env_t) R) Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_step =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log [operand1; operand2] ->
no_latest_writes action_log_new [operand1; operand2].
Proof.
intros.
interp_action_all_t;
auto.
Qed.
Lemma deq_result :
forall env Gamma sched_log action_log action_log_new v Gamma_new,
interp_action env empty_sigma Gamma sched_log action_log typed_deq =
Some (action_log_new, v, Gamma_new) ->
no_latest_writes action_log all_regs ->
no_latest_writes sched_log all_regs ->
invariant (commit_update env sched_log) ->
let operand1_val := Bits.to_N (ContextEnv.(getenv) env operand1) in
let operand2_val := Bits.to_N (ContextEnv.(getenv) env operand2) in
(Bits.to_N v = operand1_val * operand2_val)%N.
Proof.
intros.
unfold invariant, result_finished_invariant in *.
interp_action_all_t.
Bits_to_N_t.
auto.
Qed.
End MultiplierProofs.