forked from thomaskeck/MultivariateClassificationLecture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_discriminant_analysis.tex
110 lines (96 loc) · 4.09 KB
/
2_discriminant_analysis.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
\section[da]{Discriminant Analysis / Analytical Solutions}
\begin{frame}
\frametitle{A simple analytical ansatz}
\begin{overlayarea}{\textwidth}{0.3\textheight}
Assume gaussian distributions with identical covariance and different means:
\only<1-4>{
\begin{align*}
PDF(\vec{x} | S) &= \mathcal{N}(\mu_S, \Sigma) \\
PDF(\vec{x} | B) &= \mathcal{N}(\mu_B, \Sigma)
\end{align*}
}
\only<5->{
\begin{align*}
PDF(\vec{x} | S) &= \mathcal{N}(\mu_S, \Sigma) \\
PDF(\vec{x} | B) &= \mathcal{N}(\mu_B, \Sigma)\\
w &= \Sigma^{-1} \left(\mu_S - \mu_B\right)
\end{align*}
}
\end{overlayarea}
\begin{overlayarea}{\textwidth}{0.4\textheight}
\only<2> {
Use Neyman-Pearson Lemma
\begin{align*}
f(\vec{x}) &= \frac{\exp\left( - \frac{1}{2} \left(x - \mu_S\right)^T \Sigma^{-1} \left(x - \mu_S\right) \right) }{\exp\left( - \frac{1}{2} \left(x - \mu_B\right)^T \Sigma^{-1} \left(x - \mu_B\right) \right) }
\end{align*}
Classification is invariant under monotonic transformations
}
\only<3> {
\begin{align*}
2 \log f(\vec{x}) = &- \left( \left(x - \mu_S\right)^T \Sigma^{-1} \left(x - \mu_S\right) \right) \\
&+ \left( \left(x - \mu_B\right)^T \Sigma^{-1} \left(x - \mu_B\right) \right)
\end{align*}
Reorder the terms and simplify
}
\only<4> {
\begin{align*}
2 \log f(\vec{x}) &= 2 x^T \underbrace{ \Sigma^{-1} \left(\mu_S - \mu_B\right)}_{w} + \underbrace{\mu_B \Sigma^{-1} \mu_B - \mu_S \Sigma^{-1} \mu_S}_{2 c} \\
2 \log f(\vec{x}) &= 2 x^T w + 2 c
\end{align*}
Decision criterion is $f(\vec{x}) > C'$ or $\log f(\vec{x}) > C$
}
\only<5> {
\begin{align*}
C &< x^T w + c
\end{align*}
Classification is invariant under constant shifts
}
\only<6> {
\begin{align*}
C &< x^T w
\end{align*}
\textbf{Linear Discriminant Analysis (LDA) Solution}
}
\end{overlayarea}
\end{frame}
\begin{frame}
\frametitle{Linear Discriminant Analysis}
\begin{center}
\begin{itemize}
\item Assumes conditional PDFs are normally distributed
\item \only<1>{Assumes identical covariances of signal and background} \only<2>{\textbf{Assumes identical covariances of signal and background}}
\item Equivalent to commonly used Fisher's discriminant
\item Requires only means and covariances of sample
\item Separating hyperplane is linear
\end{itemize}
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=0.6\textwidth]{lda_classifier.png}};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Quadratic Discriminant Analysis}
\begin{center}
\begin{itemize}
\item Assumes conditional PDFs are normally distributed
\item Requires only means $\mu_y$ and covariances $\Sigma_y$ of sample
\item Separating hyperplane is quadratic
\end{itemize}
\vspace{-1em}
\begin{align*}
f(\vec{x}) &= \frac{\sqrt{2 \pi | \Sigma_{y=0} |} \exp\left( - \frac{1}{2} \left(x - \mu_{y=1}\right)^T \Sigma^{-1}_{y=1} \left(x - \mu_{y=1}\right) \right) }{ \sqrt{2 \pi | \Sigma_{y=1} |} \exp\left( - \frac{1}{2} \left(x - \mu_{y=0}\right)^T \Sigma^{-1}_{y=0} \left(x - \mu_{y=0}\right) \right) }
\end{align*}
\vspace{-1.5em}
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=0.6\textwidth]{qda_classifier.png}};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Example Classifier Quality}
\begin{center}
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=\textwidth]{lda_qda_roc.png}};
\end{tikzpicture}
\end{center}
\end{frame}