-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIncy.py
78 lines (62 loc) · 2.73 KB
/
Incy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import math
import os
import random
from time import time
import numpy as np
import keras
import tensorflow as tf
from tensorflow import keras
from keras import backend as K
from keras.callbacks import TensorBoard
from keras.layers import (Activation, Dense, Dropout, Flatten, LSTM, SimpleRNN)
from keras.models import Sequential
from keras.optimizers import (Adam, Adamax)
from labels_gen import labels_gen as lg
class Incy:
if K.backend() == 'tensorflow':
K.set_image_data_format("channels_last")
def train_network(self):
epoch = 300
batch_size = 69
learning_rate = math.exp(-6)
input_dim = 3
# NEURAL NET --------------------------------------------------------------------
model = Sequential()
model.add(Dense(96, input_dim=input_dim, activation='relu'))
model.add(Dense(96, activation='relu'))
model.add(Dense(96, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(96, activation='relu'))
model.add(Dense(96, activation='relu'))
model.add(Dense(96, activation='relu'))
model.add(Dropout(0.4))
# model.add(SimpleRNN(450, input_shape=(3,1), activation='relu'))
# model.add(Dense(280, activation='relu'))
# model.add(Dense(280, activation='relu'))
# model.add(Dropout(0.45))
# model.add(Dense(180, activation='relu'))
# model.add(Dense(180, activation='relu'))
# model.add(Dropout(0.45))
model.add(Dense(96, activation='relu'))
model.add(Dense(2, activation='softmax'))
opt = Adamax(lr = learning_rate)
model.compile(loss="sparse_categorical_crossentropy",
optimizer=opt, metrics=['accuracy'])
# FIT AND EVALUATE --------------------------------------------------------------
tensorboard = TensorBoard(log_dir="logs/{}".format(time()) + "-->" + str(i))
lgen = lg()
train_data = np.loadtxt("Training/train_data.txt", delimiter=" ")
label_train = lgen.generate(
"ACC_Yauto/LOG_ACCELEROMETRO.txt", "ACC_Nauto/LOG_ACCELEROMETRO.txt")
test_data = np.loadtxt("Test/test_data.txt", delimiter=" ")
label_test = lgen.generate(
"ACC_Yauto_test/Test_Auto.txt", "ACC_Nauto_test/Test_AutoN.txt")
# train_data = np.expand_dims(train_data, axis=2)
# test_data = np.expand_dims(test_data, axis=2)
model.fit(train_data, label_train, epochs=epoch, batch_size=batch_size,callbacks=[tensorboard])
res = model.evaluate(test_data, label_test)
print("\n\nRESULT: %s: %.2f%%" % (model.metrics_names[1], res[1] * 100))
model.save('ANN_inference.h5')
if __name__ == '__main__':
i=Incy()
i.train_network()