Skip to content

Latest commit

 

History

History
94 lines (59 loc) · 3.82 KB

Overview.md

File metadata and controls

94 lines (59 loc) · 3.82 KB

Inference in Probabilistic Models - Sampling Methods

Michael Habeck - Jena University Hospital - michael.habeck@uni-jena.de

Wolfhart Feldmeier - Jena University Hospital - wolfhart.feldmeier@uni-jena.de

Dates and course organization

  • Four weeks, two 2-hour lectures plus one 2-hour exercise session per week

  • Lectures on Monday and Friday, exercises on Wednesday

  • Timetable

Lecture Date Weekday Time Topic
1 Jan 15, 2024 Mon 10:15 - 11:45 Introduction / Direct Sampling Methods
Ex 1 Jan 17, 2024 Wed 10:15 - 11:45 Exercises for lecture 1
2 Jan 19, 2024 Fri 10:15 - 11:45 Rejection & Importance Sampling
3 Jan 22, 2024 Mon 10:15 - 11:45 Markov chains, MCMC
Ex 2 Jan 24, 2024 Wed 10:15 - 11:45 Exercises for lectures 2-3
4 Jan 26, 2024 Fri 10:15 - 11:45 The Metropolis-Hastings algorithm
5 Jan 19, 2024 Mon 10:15 - 11:45 Gibbs sampling
Ex 3 Jan 31, 2024 Wed 10:15 - 11:45 Exercises for lectures 4-5
6 Feb 02, 2024 Fri 10:15 - 11:45 Hamiltonian Monte Carlo
7 Feb 05, 2024 Mon 10:15 - 11:45 Hamiltonian Monte Calro II
Ex 4 Feb 07, 2024 Wed 10:15 - 11:45 Exercises for lectures 6-7
8 Feb 09, 2024 Fri 10:15 - 11:45 Practical aspects of HMC

Topics

Lecture 1: Introduction & Direct Sampling Methods

  • Motivation
  • Monte Carlo approximation
  • An inefficient way of computing $\pi$
  • Can we beat the curse of dimensionality?
  • Random number generation
  • Direct sampling by variable transformation methods

Lecture 2: Rejection and Importance Sampling

  • More direct sampling methods
  • Rejection sampling
  • Importance sampling

Lecture 3: Markov chains

  • Markov chains
  • Some mathematical facts about Markov chains

Lecture 4: The Metropolis-Hastings Algorithm

  • Fundamental theorem of Markov chains
  • Metropolis-Hastings algorithm

Lecture 5: Gibbs sampling

  • Combining Markov chains
  • Gibbs sampling

Lecture 6: Hamiltonian Monte Carlo

  • Auxiliary variable methods
  • Hamiltonian Monte Carlo I

Lecture 7: Hamiltonian Monte Carlo

  • Hamiltonian Monte Carlo II

Lecture 8: Hamiltonian Monte Carlo, Practical Issues

  • Practical Issues (convergence, diagnostic checks)

Literature