Michael Habeck - Jena University Hospital - michael.habeck@uni-jena.de
Wolfhart Feldmeier - Jena University Hospital - wolfhart.feldmeier@uni-jena.de
-
Four weeks, two 2-hour lectures plus one 2-hour exercise session per week
-
Lectures on Monday and Friday, exercises on Wednesday
-
Timetable
Lecture | Date | Weekday | Time | Topic |
---|---|---|---|---|
1 | Jan 15, 2024 | Mon | 10:15 - 11:45 | Introduction / Direct Sampling Methods |
Ex 1 | Jan 17, 2024 | Wed | 10:15 - 11:45 | Exercises for lecture 1 |
2 | Jan 19, 2024 | Fri | 10:15 - 11:45 | Rejection & Importance Sampling |
3 | Jan 22, 2024 | Mon | 10:15 - 11:45 | Markov chains, MCMC |
Ex 2 | Jan 24, 2024 | Wed | 10:15 - 11:45 | Exercises for lectures 2-3 |
4 | Jan 26, 2024 | Fri | 10:15 - 11:45 | The Metropolis-Hastings algorithm |
5 | Jan 19, 2024 | Mon | 10:15 - 11:45 | Gibbs sampling |
Ex 3 | Jan 31, 2024 | Wed | 10:15 - 11:45 | Exercises for lectures 4-5 |
6 | Feb 02, 2024 | Fri | 10:15 - 11:45 | Hamiltonian Monte Carlo |
7 | Feb 05, 2024 | Mon | 10:15 - 11:45 | Hamiltonian Monte Calro II |
Ex 4 | Feb 07, 2024 | Wed | 10:15 - 11:45 | Exercises for lectures 6-7 |
8 | Feb 09, 2024 | Fri | 10:15 - 11:45 | Practical aspects of HMC |
- Motivation
- Monte Carlo approximation
- An inefficient way of computing
$\pi$ - Can we beat the curse of dimensionality?
- Random number generation
- Direct sampling by variable transformation methods
- More direct sampling methods
- Rejection sampling
- Importance sampling
- Markov chains
- Some mathematical facts about Markov chains
- Fundamental theorem of Markov chains
- Metropolis-Hastings algorithm
- Combining Markov chains
- Gibbs sampling
- Auxiliary variable methods
- Hamiltonian Monte Carlo I
- Hamiltonian Monte Carlo II
- Practical Issues (convergence, diagnostic checks)
-
Matti Vihola: Lectures on Stochastic Simulation
-
Radford Neal: Probabilistic Inference Using Markov Chain Monte Carlo Methods
-
Chris Bishop: Pattern Recognition and Machine Learning, Chap. 11
-
David MacKay: Information Theory, Inference, and Learning Algorithms, Chap. 29 + 30
-
Iain Murray: Advances in Markov chain Monte Carlo methods
-
Andrieu, de Freitas, Doucet, Jordan: An Introduction to MCMC for Machine Learning
-
Charles Geyer: Introduction to Markov Chain Monte Carlo
-
Jun S. Liu: Monte Carlo Strategies in Scientific Computing
-
David A Levin, Yuval Peres: Markov chains and mixing times