Skip to content

Commit d85b7ab

Browse files
author
Sachin Goyal
authored
GesturePod reorg (#200)
* GesturePod reorg * Update README.md
1 parent 886740b commit d85b7ab

28 files changed

+11
-9
lines changed

README.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -52,9 +52,10 @@ the ICML '17 publications on [Bonsai](/docs/publications/Bonsai.pdf) and
5252
the NeurIPS '18 publications on [EMI-RNN](/docs/publications/emi-rnn-nips18.pdf) and
5353
[FastGRNN](/docs/publications/FastGRNN.pdf),
5454
the PLDI '19 publication on [SeeDot compiler](/docs/publications/SeeDot.pdf),
55-
the UIST '19 publication on [Gesturepod](/docs/publications/ICane-UIST19.pdf),
55+
the UIST '19 publication on [Gesturepod](/docs/publications/GesturePod-UIST19.pdf),
5656
the BuildSys '19 publication on [MSC-RNN](/docs/publications/MSCRNN.pdf),
57-
and the NeurIPS '19 publication on [Shallow RNNs](/docs/publications/Sha-RNN.pdf).
57+
the NeurIPS '19 publication on [Shallow RNNs](/docs/publications/Sha-RNN.pdf),
58+
and the ICML '20 publication on [DROCC](/docs/publications/drocc.pdf).
5859

5960

6061
Also checkout the [ELL](https://github.com/Microsoft/ELL) project which can

applications/GesturePod/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,4 +19,4 @@ To learn more about GesturePod, refer our [UIST'19 publication](https://github.c
1919

2020
The benchmark dataset for Gesture recognition can be downloaded [here](https://www.microsoft.com/en-us/research/uploads/prod/2018/05/dataTR_v1.tar.gz) [MIT Open source license].
2121

22-
_If you are using the dataset please [cite](https://dl.acm.org/downformats.cfm?id=3347881&parent_id=3332165&expformat=bibtex) GesturePod._
22+
_If you are using the dataset please [cite](https://dl.acm.org/doi/10.1145/3332165.3347881) GesturePod._

applications/GesturePod/onComputer/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ used as a basis for porting GesturePod to other platforms.
2828
2. Clone the repo and navigate to this directory
2929
```
3030
git clone https://github.com/microsoft/EdgeML.git
31-
cd EdgeML/Applications/GesturePod/onComputer
31+
cd EdgeML/applications/GesturePod/onComputer
3232
```
3333
3. Compile and build the code
3434
```

applications/GesturePod/onMKR1000/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ GesturePod *(on MKR1000)*
1919
1. Clone the repo and navigate to this folder
2020
```
2121
git clone https://github.com/microsoft/EdgeML.git
22-
cd Applications/GesturePod/onMKR1000
22+
cd EdgeML/applications/GesturePod/onMKR1000
2323
```
2424
2. Refer to this [tutorial](https://microsoft.github.io/EdgeML/Projects/GesturePod/instructable.html) to build the Hardware and setup external dependencies - [Cortex M0+ Board support](https://www.hackster.io/charifmahmoudi/arduino-mkr1000-getting-started-08bb4a).
2525

Applications/GesturePod/training/README.md renamed to applications/GesturePod/training/README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ Accelorometer and gyroscope values from the MPU6050 sensor is collected.
2929
Connect the GesturePod to computer over Serial COM Port.
3030

3131
1. Refer
32-
[here](https://github.com/microsoft/EdgeML/blob/master/Applications/GesturePod/onMKR1000/README.md#quick-start)
32+
[here](https://github.com/microsoft/EdgeML/blob/master/applications/GesturePod/onMKR1000/README.md#quick-start)
3333
to set up the required dependencies for the MKR1000 platform.
3434

3535
2. Compile, Build and Upload
@@ -87,9 +87,9 @@ This will generate a `train.csv` and `test.csv` files that should be used to gen
8787
Using the TensorFlow / PyTorch / cpp implementation of the ProtoNN algorithm from the EdgeML repository, train a
8888
model on the ```train.csv``` file generated above. Extract W, B, Z, and gamma
8989
values from the trained ProtoNN model. Update these values in
90-
```EdgeML/Applications/GesturePod/onMKR1000/src/data.h``` to deploy the model on
90+
```EdgeML/applications/GesturePod/onMKR1000/src/data.h``` to deploy the model on
9191
the GesturePod. Alternately, update
92-
```EdgeML/Applications/GesturePod/onComputer/src/data.h``` to simulate inference
92+
```EdgeML/applications/GesturePod/onComputer/src/data.h``` to simulate inference
9393
of the new model on your computer.
9494

9595
Alternatively, to generate a `data.h`, you could:

docs/publications/drocc.pdf

1.11 MB
Binary file not shown.

pytorch/README.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,8 @@ for these algorithms are in `edgeml_pytorch.trainer`.
2828
4. [S-RNN](https://github.com/microsoft/EdgeML/blob/master/docs/publications/SRNN.pdf): `edgeml_pytorch.graph.rnn.SRNN2` implements a
2929
2 layer SRNN network which can be instantied with a choice of RNN cell. The training
3030
routine for SRNN is in `edgeml_pytorch.trainer.srnnTrainer`.
31-
5. DROCC & DROCC-LF: `edgeml_pytorch.trainer.drocc_trainer` implements a DROCC meta-trainer for training any given model architecture
31+
5. [DROCC & DROCC-LF](https://github.com/microsoft/EdgeML/blob/master/docs/publications/drocc.pdf): `edgeml_pytorch.trainer.drocc_trainer` implements
32+
a DROCC meta-trainer for training any given model architecture
3233
for one-class classification on the supplied dataset. `edgeml_pytorch.trainer.drocclf_trainer` implements the DROCC-LF varaint
3334
for training models for one-class classification with limited negatives.
3435

0 commit comments

Comments
 (0)