This repository has been archived by the owner on Jun 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathlearned_quantization.py
executable file
·380 lines (347 loc) · 15 KB
/
learned_quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: learned_quantization.py
import tensorflow as tf
from tensorflow.contrib.framework import add_model_variable
from tensorflow.python.training import moving_averages
from tensorpack.models import *
from tensorpack.tfutils.tower import get_current_tower_context
MOVING_AVERAGES_FACTOR = 0.9
EPS = 0.0001
NORM_PPF_0_75 = 0.6745
@layer_register()
def QuantizedActiv(x, nbit=2):
"""
Quantize activation.
Args:
x (tf.Tensor): a 4D tensor.
nbit (int): number of bits of quantized activation. Defaults to 2.
Returns:
tf.Tensor with attribute `variables`.
Variable Names:
* ``basis``: basis of quantized activation.
Note:
About multi-GPU training: moving averages across GPUs are not aggregated.
Batch statistics are computed by main training tower. This is consistent with most frameworks.
"""
init_basis = [(NORM_PPF_0_75 * 2 / (2 ** nbit - 1)) * (2. ** i) for i in range(nbit)]
init_basis = tf.constant_initializer(init_basis)
bit_dims = [nbit, 1]
num_levels = 2 ** nbit
# initialize level multiplier
init_level_multiplier = []
for i in range(0, num_levels):
level_multiplier_i = [0. for j in range(nbit)]
level_number = i
for j in range(nbit):
level_multiplier_i[j] = float(level_number % 2)
level_number = level_number // 2
init_level_multiplier.append(level_multiplier_i)
# initialize threshold multiplier
init_thrs_multiplier = []
for i in range(1, num_levels):
thrs_multiplier_i = [0. for j in range(num_levels)]
thrs_multiplier_i[i - 1] = 0.5
thrs_multiplier_i[i] = 0.5
init_thrs_multiplier.append(thrs_multiplier_i)
with tf.variable_scope('ActivationQuantization'):
basis = tf.get_variable(
'basis', bit_dims, tf.float32,
initializer=init_basis,
trainable=False)
ctx = get_current_tower_context() # current tower context
# calculate levels and sort
level_codes = tf.constant(init_level_multiplier)
levels = tf.matmul(level_codes, basis)
levels, sort_id = tf.nn.top_k(tf.transpose(levels, [1, 0]), num_levels)
levels = tf.reverse(levels, [-1])
sort_id = tf.reverse(sort_id, [-1])
levels = tf.transpose(levels, [1, 0])
sort_id = tf.transpose(sort_id, [1, 0])
# calculate threshold
thrs_multiplier = tf.constant(init_thrs_multiplier)
thrs = tf.matmul(thrs_multiplier, levels)
# calculate output y and its binary code
y = tf.zeros_like(x) # output
reshape_x = tf.reshape(x, [-1])
zero_dims = tf.stack([tf.shape(reshape_x)[0], nbit])
bits_y = tf.fill(zero_dims, 0.)
zero_y = tf.zeros_like(x)
zero_bits_y = tf.fill(zero_dims, 0.)
for i in range(num_levels - 1):
g = tf.greater(x, thrs[i])
y = tf.where(g, zero_y + levels[i + 1], y)
bits_y = tf.where(tf.reshape(g, [-1]), zero_bits_y + level_codes[sort_id[i + 1][0]], bits_y)
# training
if ctx.is_main_training_tower:
BT = tf.matrix_transpose(bits_y)
# calculate BTxB
BTxB = []
for i in range(nbit):
for j in range(nbit):
BTxBij = tf.multiply(BT[i], BT[j])
BTxBij = tf.reduce_sum(BTxBij)
BTxB.append(BTxBij)
BTxB = tf.reshape(tf.stack(values=BTxB), [nbit, nbit])
BTxB_inv = tf.matrix_inverse(BTxB)
# calculate BTxX
BTxX = []
for i in range(nbit):
BTxXi0 = tf.multiply(BT[i], reshape_x)
BTxXi0 = tf.reduce_sum(BTxXi0)
BTxX.append(BTxXi0)
BTxX = tf.reshape(tf.stack(values=BTxX), [nbit, 1])
new_basis = tf.matmul(BTxB_inv, BTxX) # calculate new basis
# create moving averages op
updata_moving_basis = moving_averages.assign_moving_average(
basis, new_basis, MOVING_AVERAGES_FACTOR)
add_model_variable(basis)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, updata_moving_basis)
for i in range(nbit):
tf.summary.scalar('basis%d' % i, new_basis[i][0])
x_clip = tf.minimum(x, levels[num_levels - 1]) # gradient clip
y = x_clip + tf.stop_gradient(-x_clip) + tf.stop_gradient(y) # gradient: y=clip(x)
y.variables = VariableHolder(basis=basis)
return y
def QuantizedWeight(name, x, n, nbit=2):
"""
Quantize weight.
Args:
x (tf.Tensor): a 4D tensor.
Must have known number of channels, but can have other unknown dimensions.
name (str): operator's name.
n (int or double): variance of weight initialization.
nbit (int): number of bits of quantized weight. Defaults to 2.
Returns:
tf.Tensor with attribute `variables`.
Variable Names:
* ``basis``: basis of quantized weight.
Note:
About multi-GPU training: moving averages across GPUs are not aggregated.
Batch statistics are computed by main training tower. This is consistent with most frameworks.
"""
num_filters = x.get_shape().as_list()[-1]
init_basis = []
base = NORM_PPF_0_75 * ((2. / n) ** 0.5) / (2 ** (nbit - 1))
for j in range(nbit):
init_basis.append([(2 ** j) * base for i in range(num_filters)])
init_basis = tf.constant_initializer(init_basis)
bit_dims = [nbit, num_filters]
num_levels = 2 ** nbit
delta = EPS
# initialize level multiplier
init_level_multiplier = []
for i in range(num_levels):
level_multiplier_i = [0. for j in range(nbit)]
level_number = i
for j in range(nbit):
binary_code = level_number % 2
if binary_code == 0:
binary_code = -1
level_multiplier_i[j] = float(binary_code)
level_number = level_number // 2
init_level_multiplier.append(level_multiplier_i)
# initialize threshold multiplier
init_thrs_multiplier = []
for i in range(1, num_levels):
thrs_multiplier_i = [0. for j in range(num_levels)]
thrs_multiplier_i[i - 1] = 0.5
thrs_multiplier_i[i] = 0.5
init_thrs_multiplier.append(thrs_multiplier_i)
with tf.variable_scope(name):
basis = tf.get_variable(
'basis', bit_dims, tf.float32,
initializer=init_basis,
trainable=False)
level_codes = tf.constant(init_level_multiplier)
thrs_multiplier = tf.constant(init_thrs_multiplier)
sum_multiplier = tf.constant(1., shape=[1, tf.reshape(x, [-1, num_filters]).get_shape()[0]])
sum_multiplier_basis = tf.constant(1., shape=[1, nbit])
ctx = get_current_tower_context() # current tower context
# calculate levels and sort
levels = tf.matmul(level_codes, basis)
levels, sort_id = tf.nn.top_k(tf.transpose(levels, [1, 0]), num_levels)
levels = tf.reverse(levels, [-1])
sort_id = tf.reverse(sort_id, [-1])
levels = tf.transpose(levels, [1, 0])
sort_id = tf.transpose(sort_id, [1, 0])
# calculate threshold
thrs = tf.matmul(thrs_multiplier, levels)
# calculate level codes per channel
reshape_x = tf.reshape(x, [-1, num_filters])
level_codes_channelwise_dims = tf.stack([num_levels * num_filters, nbit])
level_codes_channelwise = tf.fill(level_codes_channelwise_dims, 0.)
for i in range(num_levels):
eq = tf.equal(sort_id, i)
level_codes_channelwise = tf.where(tf.reshape(eq, [-1]), level_codes_channelwise + level_codes[i], level_codes_channelwise)
level_codes_channelwise = tf.reshape(level_codes_channelwise, [num_levels, num_filters, nbit])
# calculate output y and its binary code
y = tf.zeros_like(x) + levels[0] # output
zero_dims = tf.stack([tf.shape(reshape_x)[0] * num_filters, nbit])
bits_y = tf.fill(zero_dims, -1.)
zero_y = tf.zeros_like(x)
zero_bits_y = tf.fill(zero_dims, 0.)
zero_bits_y = tf.reshape(zero_bits_y, [-1, num_filters, nbit])
for i in range(num_levels - 1):
g = tf.greater(x, thrs[i])
y = tf.where(g, zero_y + levels[i + 1], y)
bits_y = tf.where(tf.reshape(g, [-1]), tf.reshape(zero_bits_y + level_codes_channelwise[i + 1], [-1, nbit]), bits_y)
bits_y = tf.reshape(bits_y, [-1, num_filters, nbit])
# training
if ctx.is_main_training_tower:
BT = tf.transpose(bits_y, [2, 0, 1])
# calculate BTxB
BTxB = []
for i in range(nbit):
for j in range(nbit):
BTxBij = tf.multiply(BT[i], BT[j])
BTxBij = tf.matmul(sum_multiplier, BTxBij)
if i == j:
mat_one = tf.ones([1, num_filters])
BTxBij = BTxBij + (delta * mat_one) # + E
BTxB.append(BTxBij)
BTxB = tf.reshape(tf.stack(values=BTxB), [nbit, nbit, num_filters])
# calculate inverse of BTxB
if nbit > 2:
BTxB_transpose = tf.transpose(BTxB, [2, 0, 1])
BTxB_inv = tf.matrix_inverse(BTxB_transpose)
BTxB_inv = tf.transpose(BTxB_inv, [1, 2, 0])
elif nbit == 2:
det = tf.multiply(BTxB[0][0], BTxB[1][1]) - tf.multiply(BTxB[0][1], BTxB[1][0])
inv = []
inv.append(BTxB[1][1] / det)
inv.append(-BTxB[0][1] / det)
inv.append(-BTxB[1][0] / det)
inv.append(BTxB[0][0] / det)
BTxB_inv = tf.reshape(tf.stack(values=inv), [nbit, nbit, num_filters])
elif nbit == 1:
BTxB_inv = tf.reciprocal(BTxB)
# calculate BTxX
BTxX = []
for i in range(nbit):
BTxXi0 = tf.multiply(BT[i], reshape_x)
BTxXi0 = tf.matmul(sum_multiplier, BTxXi0)
BTxX.append(BTxXi0)
BTxX = tf.reshape(tf.stack(values=BTxX), [nbit, num_filters])
BTxX = BTxX + (delta * basis) # + basis
# calculate new basis
new_basis = []
for i in range(nbit):
new_basis_i = tf.multiply(BTxB_inv[i], BTxX)
new_basis_i = tf.matmul(sum_multiplier_basis, new_basis_i)
new_basis.append(new_basis_i)
new_basis = tf.reshape(tf.stack(values=new_basis), [nbit, num_filters])
# create moving averages op
updata_moving_basis = moving_averages.assign_moving_average(
basis, new_basis, MOVING_AVERAGES_FACTOR)
add_model_variable(basis)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, updata_moving_basis)
y = x + tf.stop_gradient(-x) + tf.stop_gradient(y) # gradient: y=x
y.variables = VariableHolder(basis=basis)
return y
@layer_register()
def Conv2DQuant(x, out_channel, kernel_shape,
padding='SAME', stride=1,
W_init=None, b_init=None,
nl=tf.identity, split=1, use_bias=True,
data_format='NHWC', is_quant=True, nbit=1, fc=False):
"""
2D convolution on 4D inputs.
Args:
x (tf.Tensor): a 4D tensor.
Must have known number of channels, but can have other unknown dimensions.
out_channel (int): number of output channel.
kernel_shape: (h, w) tuple or a int.
stride: (h, w) tuple or a int.
padding (str): 'valid' or 'same'. Case insensitive.
split (int): Split channels as used in Alexnet. Defaults to 1 (no split).
W_init: initializer for W. Defaults to `variance_scaling_initializer`.
b_init: initializer for b. Defaults to zero.
nl: a nonlinearity function.
use_bias (bool): whether to use bias.
data_format (str): 'NHWC' or 'NCHW'. Defaults to 'NHWC'.
is_quant (bool): whether to quantize weight. Defaults to 'True'.
nbit (int): number of bits of quantized weight. Defaults to 1.
fc (bool): whether to convert Conv2D to FullyConnect. Defaults to 'False'.
Returns:
tf.Tensor named ``output`` with attribute `variables`.
Variable Names:
* ``W``: weights
* ``b``: bias
"""
n = kernel_shape * kernel_shape * out_channel
in_shape = x.get_shape().as_list()
channel_axis = 3 if data_format == 'NHWC' else 1
in_channel = in_shape[channel_axis]
assert in_channel is not None, "[Conv2DQuant] Input cannot have unknown channel!"
assert in_channel % split == 0
assert out_channel % split == 0
if fc:
x = tf.reshape(x, [-1, in_channel, 1, 1])
kernel_shape = [kernel_shape, kernel_shape]
padding = padding.upper()
filter_shape = kernel_shape + [in_channel / split, out_channel]
if data_format == 'NCHW':
stride = [1, 1, stride, stride]
else:
stride = [1, stride, stride, 1]
if W_init is None:
W_init = tf.contrib.layers.variance_scaling_initializer()
if b_init is None:
b_init = tf.constant_initializer()
W = tf.get_variable('W', filter_shape, initializer=W_init)
kernel_in = W * 1
tf.summary.scalar('weight', tf.reduce_mean(tf.abs(W)))
if is_quant:
quantized_weight = QuantizedWeight('weight_quant', kernel_in, n, nbit=nbit)
else:
quantized_weight = kernel_in
if use_bias:
b = tf.get_variable('b', [out_channel], initializer=b_init)
if split == 1:
conv = tf.nn.conv2d(x, quantized_weight, stride, padding, data_format=data_format)
else:
inputs = tf.split(x, split, channel_axis)
kernels = tf.split(quantized_weight, split, 3)
outputs = [tf.nn.conv2d(i, k, stride, padding, data_format=data_format)
for i, k in zip(inputs, kernels)]
conv = tf.concat(outputs, channel_axis)
ret = nl(tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv, name='output')
ret.variables = VariableHolder(W=W)
if use_bias:
ret.variables.b = b
if fc:
ret = tf.reshape(ret, [-1, out_channel])
return ret
@layer_register(log_shape=False, use_scope=None)
def BNReLUQuant(x):
"""
A shorthand of BatchNormalization + ReLU + QuantizedActiv.
"""
x = BatchNorm('bn', x)
x = tf.nn.relu(x)
x = QuantizedActiv('quant', x)
return x
def getBNReLUQuant(x, name=None):
"""
A shorthand of BatchNormalization + ReLU + QuantizedActiv.
"""
x = BatchNorm('bn', x)
x = tf.nn.relu(x, name=name)
x = QuantizedActiv('quant', x)
return x
def getfcBNReLUQuant(x, name=None):
"""
A shorthand of BatchNormalization + ReLU + QuantizedActiv after FullyConnect.
"""
x = BatchNorm('bn', x, data_format='NHWC', use_scale=False, use_bias=False)
x = tf.nn.relu(x, name=name)
x = QuantizedActiv('quant', x)
return x
def getfcBNReLU(x, name=None):
"""
A shorthand of BatchNormalization + ReLU after FullyConnect.
"""
x = BatchNorm('bn', x, data_format='NHWC', use_scale=False, use_bias=False)
x = tf.nn.relu(x, name=name)
return x