-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathtest_sklearn.py
874 lines (761 loc) · 46.2 KB
/
test_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# coding: utf-8
import itertools
import joblib
import math
import os
import unittest
import warnings
import lightgbm as lgb
import numpy as np
from sklearn import __version__ as sk_version
from sklearn.base import clone
from sklearn.datasets import (load_boston, load_breast_cancer, load_digits,
load_iris, load_svmlight_file)
from sklearn.exceptions import SkipTestWarning
from sklearn.metrics import log_loss, mean_squared_error
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.utils.estimator_checks import (_yield_all_checks, SkipTest,
check_parameters_default_constructible)
decreasing_generator = itertools.count(0, -1)
def custom_asymmetric_obj(y_true, y_pred):
residual = (y_true - y_pred).astype("float")
grad = np.where(residual < 0, -2 * 10.0 * residual, -2 * residual)
hess = np.where(residual < 0, 2 * 10.0, 2.0)
return grad, hess
def objective_ls(y_true, y_pred):
grad = (y_pred - y_true)
hess = np.ones(len(y_true))
return grad, hess
def logregobj(y_true, y_pred):
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
grad = y_pred - y_true
hess = y_pred * (1.0 - y_pred)
return grad, hess
def custom_dummy_obj(y_true, y_pred):
return np.ones(y_true.shape), np.ones(y_true.shape)
def constant_metric(y_true, y_pred):
return 'error', 0, False
def decreasing_metric(y_true, y_pred):
return ('decreasing_metric', next(decreasing_generator), False)
def mse(y_true, y_pred):
return 'custom MSE', mean_squared_error(y_true, y_pred), False
def binary_error(y_true, y_pred):
return np.mean((y_pred > 0.5) != y_true)
def multi_error(y_true, y_pred):
return np.mean(y_true != y_pred)
def multi_logloss(y_true, y_pred):
return np.mean([-math.log(y_pred[i][y]) for i, y in enumerate(y_true)])
class TestSklearn(unittest.TestCase):
def test_binary(self):
X, y = load_breast_cancer(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMClassifier(n_estimators=50, silent=True)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
ret = log_loss(y_test, gbm.predict_proba(X_test))
self.assertLess(ret, 0.12)
self.assertAlmostEqual(ret, gbm.evals_result_['valid_0']['binary_logloss'][gbm.best_iteration_ - 1], places=5)
def test_regression(self):
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(n_estimators=50, silent=True)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
ret = mean_squared_error(y_test, gbm.predict(X_test))
self.assertLess(ret, 7)
self.assertAlmostEqual(ret, gbm.evals_result_['valid_0']['l2'][gbm.best_iteration_ - 1], places=5)
def test_multiclass(self):
X, y = load_digits(10, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMClassifier(n_estimators=50, silent=True)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
ret = multi_error(y_test, gbm.predict(X_test))
self.assertLess(ret, 0.05)
ret = multi_logloss(y_test, gbm.predict_proba(X_test))
self.assertLess(ret, 0.16)
self.assertAlmostEqual(ret, gbm.evals_result_['valid_0']['multi_logloss'][gbm.best_iteration_ - 1], places=5)
def test_lambdarank(self):
X_train, y_train = load_svmlight_file(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.train'))
X_test, y_test = load_svmlight_file(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.test'))
q_train = np.loadtxt(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.train.query'))
q_test = np.loadtxt(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.test.query'))
gbm = lgb.LGBMRanker(n_estimators=50)
gbm.fit(X_train, y_train, group=q_train, eval_set=[(X_test, y_test)],
eval_group=[q_test], eval_at=[1, 3], early_stopping_rounds=10, verbose=False,
callbacks=[lgb.reset_parameter(learning_rate=lambda x: max(0.01, 0.1 - 0.01 * x))])
self.assertLessEqual(gbm.best_iteration_, 24)
self.assertGreater(gbm.best_score_['valid_0']['ndcg@1'], 0.5769)
self.assertGreater(gbm.best_score_['valid_0']['ndcg@3'], 0.5920)
def test_xendcg(self):
dir_path = os.path.dirname(os.path.realpath(__file__))
X_train, y_train = load_svmlight_file(os.path.join(dir_path, '../../examples/xendcg/rank.train'))
X_test, y_test = load_svmlight_file(os.path.join(dir_path, '../../examples/xendcg/rank.test'))
q_train = np.loadtxt(os.path.join(dir_path, '../../examples/xendcg/rank.train.query'))
q_test = np.loadtxt(os.path.join(dir_path, '../../examples/xendcg/rank.test.query'))
gbm = lgb.LGBMRanker(n_estimators=50, objective='rank_xendcg', random_state=5, n_jobs=1)
gbm.fit(X_train, y_train, group=q_train, eval_set=[(X_test, y_test)],
eval_group=[q_test], eval_at=[1, 3], early_stopping_rounds=10, verbose=False,
eval_metric='ndcg',
callbacks=[lgb.reset_parameter(learning_rate=lambda x: max(0.01, 0.1 - 0.01 * x))])
self.assertLessEqual(gbm.best_iteration_, 24)
self.assertGreater(gbm.best_score_['valid_0']['ndcg@1'], 0.6211)
self.assertGreater(gbm.best_score_['valid_0']['ndcg@3'], 0.6253)
def test_regression_with_custom_objective(self):
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(n_estimators=50, silent=True, objective=objective_ls)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
ret = mean_squared_error(y_test, gbm.predict(X_test))
self.assertLess(ret, 7.0)
self.assertAlmostEqual(ret, gbm.evals_result_['valid_0']['l2'][gbm.best_iteration_ - 1], places=5)
def test_binary_classification_with_custom_objective(self):
X, y = load_digits(2, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMClassifier(n_estimators=50, silent=True, objective=logregobj)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
# prediction result is actually not transformed (is raw) due to custom objective
y_pred_raw = gbm.predict_proba(X_test)
self.assertFalse(np.all(y_pred_raw >= 0))
y_pred = 1.0 / (1.0 + np.exp(-y_pred_raw))
ret = binary_error(y_test, y_pred)
self.assertLess(ret, 0.05)
def test_dart(self):
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(boosting_type='dart', n_estimators=50)
gbm.fit(X_train, y_train)
score = gbm.score(X_test, y_test)
self.assertGreaterEqual(score, 0.8)
self.assertLessEqual(score, 1.)
def test_grid_search(self):
X, y = load_iris(True)
y = np.array(list(map(str, y))) # utilize label encoder at it's max power
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
params = {'subsample': 0.8,
'subsample_freq': 1}
grid_params = {'boosting_type': ['rf', 'gbdt'],
'n_estimators': [4, 6],
'reg_alpha': [0.01, 0.005]}
fit_params = {'verbose': False,
'eval_set': [(X_test, y_test)],
'eval_metric': constant_metric,
'early_stopping_rounds': 2}
grid = GridSearchCV(lgb.LGBMClassifier(**params), grid_params, cv=2)
grid.fit(X, y, **fit_params)
self.assertIn(grid.best_params_['boosting_type'], ['rf', 'gbdt'])
self.assertIn(grid.best_params_['n_estimators'], [4, 6])
self.assertIn(grid.best_params_['reg_alpha'], [0.01, 0.005])
self.assertLess(grid.best_score_, 0.9)
self.assertEqual(grid.best_estimator_.best_iteration_, 1)
self.assertLess(grid.best_estimator_.best_score_['valid_0']['multi_logloss'], 0.25)
self.assertEqual(grid.best_estimator_.best_score_['valid_0']['error'], 0)
def test_clone_and_property(self):
X, y = load_boston(True)
gbm = lgb.LGBMRegressor(n_estimators=10, silent=True)
gbm.fit(X, y, verbose=False)
gbm_clone = clone(gbm)
self.assertIsInstance(gbm.booster_, lgb.Booster)
self.assertIsInstance(gbm.feature_importances_, np.ndarray)
X, y = load_digits(2, True)
clf = lgb.LGBMClassifier(n_estimators=10, silent=True)
clf.fit(X, y, verbose=False)
self.assertListEqual(sorted(clf.classes_), [0, 1])
self.assertEqual(clf.n_classes_, 2)
self.assertIsInstance(clf.booster_, lgb.Booster)
self.assertIsInstance(clf.feature_importances_, np.ndarray)
def test_joblib(self):
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(n_estimators=10, objective=custom_asymmetric_obj,
silent=True, importance_type='split')
gbm.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric=mse, early_stopping_rounds=5, verbose=False,
callbacks=[lgb.reset_parameter(learning_rate=list(np.arange(1, 0, -0.1)))])
joblib.dump(gbm, 'lgb.pkl') # test model with custom functions
gbm_pickle = joblib.load('lgb.pkl')
self.assertIsInstance(gbm_pickle.booster_, lgb.Booster)
self.assertDictEqual(gbm.get_params(), gbm_pickle.get_params())
np.testing.assert_array_equal(gbm.feature_importances_, gbm_pickle.feature_importances_)
self.assertAlmostEqual(gbm_pickle.learning_rate, 0.1)
self.assertTrue(callable(gbm_pickle.objective))
for eval_set in gbm.evals_result_:
for metric in gbm.evals_result_[eval_set]:
np.testing.assert_allclose(gbm.evals_result_[eval_set][metric],
gbm_pickle.evals_result_[eval_set][metric])
pred_origin = gbm.predict(X_test)
pred_pickle = gbm_pickle.predict(X_test)
np.testing.assert_allclose(pred_origin, pred_pickle)
def test_random_state_object(self):
X, y = load_iris(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
state1 = np.random.RandomState(123)
state2 = np.random.RandomState(123)
clf1 = lgb.LGBMClassifier(n_estimators=10, subsample=0.5, subsample_freq=1, random_state=state1)
clf2 = lgb.LGBMClassifier(n_estimators=10, subsample=0.5, subsample_freq=1, random_state=state2)
# Test if random_state is properly stored
self.assertIs(clf1.random_state, state1)
self.assertIs(clf2.random_state, state2)
# Test if two random states produce identical models
clf1.fit(X_train, y_train)
clf2.fit(X_train, y_train)
y_pred1 = clf1.predict(X_test, raw_score=True)
y_pred2 = clf2.predict(X_test, raw_score=True)
np.testing.assert_allclose(y_pred1, y_pred2)
np.testing.assert_array_equal(clf1.feature_importances_, clf2.feature_importances_)
df1 = clf1.booster_.model_to_string(num_iteration=0)
df2 = clf2.booster_.model_to_string(num_iteration=0)
self.assertMultiLineEqual(df1, df2)
# Test if subsequent fits sample from random_state object and produce different models
clf1.fit(X_train, y_train)
y_pred1_refit = clf1.predict(X_test, raw_score=True)
df3 = clf1.booster_.model_to_string(num_iteration=0)
self.assertIs(clf1.random_state, state1)
self.assertIs(clf2.random_state, state2)
self.assertRaises(AssertionError,
np.testing.assert_allclose,
y_pred1, y_pred1_refit)
self.assertRaises(AssertionError,
self.assertMultiLineEqual,
df1, df3)
def test_feature_importances_single_leaf(self):
data = load_iris()
clf = lgb.LGBMClassifier(n_estimators=10)
clf.fit(data.data, data.target)
importances = clf.feature_importances_
self.assertEqual(len(importances), 4)
def test_feature_importances_type(self):
data = load_iris()
clf = lgb.LGBMClassifier(n_estimators=10)
clf.fit(data.data, data.target)
clf.set_params(importance_type='split')
importances_split = clf.feature_importances_
clf.set_params(importance_type='gain')
importances_gain = clf.feature_importances_
# Test that the largest element is NOT the same, the smallest can be the same, i.e. zero
importance_split_top1 = sorted(importances_split, reverse=True)[0]
importance_gain_top1 = sorted(importances_gain, reverse=True)[0]
self.assertNotEqual(importance_split_top1, importance_gain_top1)
# sklearn <0.19 cannot accept instance, but many tests could be passed only with min_data=1 and min_data_in_bin=1
@unittest.skipIf(sk_version < '0.19.0', 'scikit-learn version is less than 0.19')
def test_sklearn_integration(self):
# we cannot use `check_estimator` directly since there is no skip test mechanism
for name, estimator in ((lgb.sklearn.LGBMClassifier.__name__, lgb.sklearn.LGBMClassifier),
(lgb.sklearn.LGBMRegressor.__name__, lgb.sklearn.LGBMRegressor)):
check_parameters_default_constructible(name, estimator)
# we cannot leave default params (see https://github.com/microsoft/LightGBM/issues/833)
estimator = estimator(min_child_samples=1, min_data_in_bin=1)
for check in _yield_all_checks(name, estimator):
check_name = check.func.__name__ if hasattr(check, 'func') else check.__name__
if check_name == 'check_estimators_nan_inf':
continue # skip test because LightGBM deals with nan
elif check_name == "check_no_attributes_set_in_init":
# skip test because scikit-learn incorrectly asserts that
# private attributes cannot be set in __init__
# (see https://github.com/microsoft/LightGBM/issues/2628)
continue
try:
check(name, estimator)
except SkipTest as message:
warnings.warn(message, SkipTestWarning)
@unittest.skipIf(not lgb.compat.PANDAS_INSTALLED, 'pandas is not installed')
def test_pandas_categorical(self):
import pandas as pd
np.random.seed(42) # sometimes there is no difference how cols are treated (cat or not cat)
X = pd.DataFrame({"A": np.random.permutation(['a', 'b', 'c', 'd'] * 75), # str
"B": np.random.permutation([1, 2, 3] * 100), # int
"C": np.random.permutation([0.1, 0.2, -0.1, -0.1, 0.2] * 60), # float
"D": np.random.permutation([True, False] * 150), # bool
"E": pd.Categorical(np.random.permutation(['z', 'y', 'x', 'w', 'v'] * 60),
ordered=True)}) # str and ordered categorical
y = np.random.permutation([0, 1] * 150)
X_test = pd.DataFrame({"A": np.random.permutation(['a', 'b', 'e'] * 20), # unseen category
"B": np.random.permutation([1, 3] * 30),
"C": np.random.permutation([0.1, -0.1, 0.2, 0.2] * 15),
"D": np.random.permutation([True, False] * 30),
"E": pd.Categorical(np.random.permutation(['z', 'y'] * 30),
ordered=True)})
np.random.seed() # reset seed
cat_cols_actual = ["A", "B", "C", "D"]
cat_cols_to_store = cat_cols_actual + ["E"]
X[cat_cols_actual] = X[cat_cols_actual].astype('category')
X_test[cat_cols_actual] = X_test[cat_cols_actual].astype('category')
cat_values = [X[col].cat.categories.tolist() for col in cat_cols_to_store]
gbm0 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y)
pred0 = gbm0.predict(X_test, raw_score=True)
pred_prob = gbm0.predict_proba(X_test)[:, 1]
gbm1 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, pd.Series(y), categorical_feature=[0])
pred1 = gbm1.predict(X_test, raw_score=True)
gbm2 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y, categorical_feature=['A'])
pred2 = gbm2.predict(X_test, raw_score=True)
gbm3 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y, categorical_feature=['A', 'B', 'C', 'D'])
pred3 = gbm3.predict(X_test, raw_score=True)
gbm3.booster_.save_model('categorical.model')
gbm4 = lgb.Booster(model_file='categorical.model')
pred4 = gbm4.predict(X_test)
gbm5 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y, categorical_feature=['A', 'B', 'C', 'D', 'E'])
pred5 = gbm5.predict(X_test, raw_score=True)
gbm6 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y, categorical_feature=[])
pred6 = gbm6.predict(X_test, raw_score=True)
self.assertRaises(AssertionError,
np.testing.assert_allclose,
pred0, pred1)
self.assertRaises(AssertionError,
np.testing.assert_allclose,
pred0, pred2)
np.testing.assert_allclose(pred1, pred2)
np.testing.assert_allclose(pred0, pred3)
np.testing.assert_allclose(pred_prob, pred4)
self.assertRaises(AssertionError,
np.testing.assert_allclose,
pred0, pred5) # ordered cat features aren't treated as cat features by default
self.assertRaises(AssertionError,
np.testing.assert_allclose,
pred0, pred6)
self.assertListEqual(gbm0.booster_.pandas_categorical, cat_values)
self.assertListEqual(gbm1.booster_.pandas_categorical, cat_values)
self.assertListEqual(gbm2.booster_.pandas_categorical, cat_values)
self.assertListEqual(gbm3.booster_.pandas_categorical, cat_values)
self.assertListEqual(gbm4.pandas_categorical, cat_values)
self.assertListEqual(gbm5.booster_.pandas_categorical, cat_values)
self.assertListEqual(gbm6.booster_.pandas_categorical, cat_values)
@unittest.skipIf(not lgb.compat.PANDAS_INSTALLED, 'pandas is not installed')
def test_pandas_sparse(self):
import pandas as pd
try:
from pandas.arrays import SparseArray
except ImportError: # support old versions
from pandas import SparseArray
X = pd.DataFrame({"A": SparseArray(np.random.permutation([0, 1, 2] * 100)),
"B": SparseArray(np.random.permutation([0.0, 0.1, 0.2, -0.1, 0.2] * 60)),
"C": SparseArray(np.random.permutation([True, False] * 150))})
y = pd.Series(SparseArray(np.random.permutation([0, 1] * 150)))
X_test = pd.DataFrame({"A": SparseArray(np.random.permutation([0, 2] * 30)),
"B": SparseArray(np.random.permutation([0.0, 0.1, 0.2, -0.1] * 15)),
"C": SparseArray(np.random.permutation([True, False] * 30))})
if pd.__version__ >= '0.24.0':
for dtype in pd.concat([X.dtypes, X_test.dtypes, pd.Series(y.dtypes)]):
self.assertTrue(pd.api.types.is_sparse(dtype))
gbm = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y)
pred_sparse = gbm.predict(X_test, raw_score=True)
if hasattr(X_test, 'sparse'):
pred_dense = gbm.predict(X_test.sparse.to_dense(), raw_score=True)
else:
pred_dense = gbm.predict(X_test.to_dense(), raw_score=True)
np.testing.assert_allclose(pred_sparse, pred_dense)
def test_predict(self):
# With default params
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target,
test_size=0.2, random_state=42)
gbm = lgb.train({'objective': 'multiclass',
'num_class': 3,
'verbose': -1},
lgb.Dataset(X_train, y_train))
clf = lgb.LGBMClassifier(verbose=-1).fit(X_train, y_train)
# Tests same probabilities
res_engine = gbm.predict(X_test)
res_sklearn = clf.predict_proba(X_test)
np.testing.assert_allclose(res_engine, res_sklearn)
# Tests same predictions
res_engine = np.argmax(gbm.predict(X_test), axis=1)
res_sklearn = clf.predict(X_test)
np.testing.assert_equal(res_engine, res_sklearn)
# Tests same raw scores
res_engine = gbm.predict(X_test, raw_score=True)
res_sklearn = clf.predict(X_test, raw_score=True)
np.testing.assert_allclose(res_engine, res_sklearn)
# Tests same leaf indices
res_engine = gbm.predict(X_test, pred_leaf=True)
res_sklearn = clf.predict(X_test, pred_leaf=True)
np.testing.assert_equal(res_engine, res_sklearn)
# Tests same feature contributions
res_engine = gbm.predict(X_test, pred_contrib=True)
res_sklearn = clf.predict(X_test, pred_contrib=True)
np.testing.assert_allclose(res_engine, res_sklearn)
# Tests other parameters for the prediction works
res_engine = gbm.predict(X_test)
res_sklearn_params = clf.predict_proba(X_test,
pred_early_stop=True,
pred_early_stop_margin=1.0)
self.assertRaises(AssertionError,
np.testing.assert_allclose,
res_engine, res_sklearn_params)
def test_evaluate_train_set(self):
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(n_estimators=10, silent=True)
gbm.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], verbose=False)
self.assertEqual(len(gbm.evals_result_), 2)
self.assertIn('training', gbm.evals_result_)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('l2', gbm.evals_result_['training'])
self.assertIn('valid_1', gbm.evals_result_)
self.assertEqual(len(gbm.evals_result_['valid_1']), 1)
self.assertIn('l2', gbm.evals_result_['valid_1'])
def test_metrics(self):
X, y = load_boston(True)
params = {'n_estimators': 2, 'verbose': -1}
params_fit = {'X': X, 'y': y, 'eval_set': (X, y), 'verbose': False}
# no custom objective, no custom metric
# default metric
gbm = lgb.LGBMRegressor(**params).fit(**params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('l2', gbm.evals_result_['training'])
# non-default metric
gbm = lgb.LGBMRegressor(metric='mape', **params).fit(**params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('mape', gbm.evals_result_['training'])
# no metric
gbm = lgb.LGBMRegressor(metric='None', **params).fit(**params_fit)
self.assertIs(gbm.evals_result_, None)
# non-default metric in eval_metric
gbm = lgb.LGBMRegressor(**params).fit(eval_metric='mape', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('l2', gbm.evals_result_['training'])
self.assertIn('mape', gbm.evals_result_['training'])
# non-default metric with non-default metric in eval_metric
gbm = lgb.LGBMRegressor(metric='gamma', **params).fit(eval_metric='mape', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('gamma', gbm.evals_result_['training'])
self.assertIn('mape', gbm.evals_result_['training'])
# non-default metric with multiple metrics in eval_metric
gbm = lgb.LGBMRegressor(metric='gamma',
**params).fit(eval_metric=['l2', 'mape'], **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 3)
self.assertIn('gamma', gbm.evals_result_['training'])
self.assertIn('l2', gbm.evals_result_['training'])
self.assertIn('mape', gbm.evals_result_['training'])
# default metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1', **params).fit(**params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('l1', gbm.evals_result_['training'])
# non-default metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='mape',
**params).fit(**params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('mape', gbm.evals_result_['training'])
# no metric
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='None',
**params).fit(**params_fit)
self.assertIs(gbm.evals_result_, None)
# non-default metric in eval_metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1',
**params).fit(eval_metric='mape', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('l1', gbm.evals_result_['training'])
self.assertIn('mape', gbm.evals_result_['training'])
# non-default metric with non-default metric in eval_metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='gamma',
**params).fit(eval_metric='mape', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('gamma', gbm.evals_result_['training'])
self.assertIn('mape', gbm.evals_result_['training'])
# non-default metric with multiple metrics in eval_metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='gamma',
**params).fit(eval_metric=['l2', 'mape'], **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 3)
self.assertIn('gamma', gbm.evals_result_['training'])
self.assertIn('l2', gbm.evals_result_['training'])
self.assertIn('mape', gbm.evals_result_['training'])
# custom objective, no custom metric
# default regression metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, **params).fit(**params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('l2', gbm.evals_result_['training'])
# non-default regression metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric='mape', **params).fit(**params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('mape', gbm.evals_result_['training'])
# multiple regression metrics for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric=['l1', 'gamma'],
**params).fit(**params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('l1', gbm.evals_result_['training'])
self.assertIn('gamma', gbm.evals_result_['training'])
# no metric
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric='None',
**params).fit(**params_fit)
self.assertIs(gbm.evals_result_, None)
# default regression metric with non-default metric in eval_metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj,
**params).fit(eval_metric='mape', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('l2', gbm.evals_result_['training'])
self.assertIn('mape', gbm.evals_result_['training'])
# non-default regression metric with metric in eval_metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric='mape',
**params).fit(eval_metric='gamma', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('mape', gbm.evals_result_['training'])
self.assertIn('gamma', gbm.evals_result_['training'])
# multiple regression metrics with metric in eval_metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric=['l1', 'gamma'],
**params).fit(eval_metric='l2', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 3)
self.assertIn('l1', gbm.evals_result_['training'])
self.assertIn('gamma', gbm.evals_result_['training'])
self.assertIn('l2', gbm.evals_result_['training'])
# multiple regression metrics with multiple metrics in eval_metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric=['l1', 'gamma'],
**params).fit(eval_metric=['l2', 'mape'], **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 4)
self.assertIn('l1', gbm.evals_result_['training'])
self.assertIn('gamma', gbm.evals_result_['training'])
self.assertIn('l2', gbm.evals_result_['training'])
self.assertIn('mape', gbm.evals_result_['training'])
# no custom objective, custom metric
# default metric with custom metric
gbm = lgb.LGBMRegressor(**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('l2', gbm.evals_result_['training'])
self.assertIn('error', gbm.evals_result_['training'])
# non-default metric with custom metric
gbm = lgb.LGBMRegressor(metric='mape',
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('mape', gbm.evals_result_['training'])
self.assertIn('error', gbm.evals_result_['training'])
# multiple metrics with custom metric
gbm = lgb.LGBMRegressor(metric=['l1', 'gamma'],
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 3)
self.assertIn('l1', gbm.evals_result_['training'])
self.assertIn('gamma', gbm.evals_result_['training'])
self.assertIn('error', gbm.evals_result_['training'])
# custom metric (disable default metric)
gbm = lgb.LGBMRegressor(metric='None',
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('error', gbm.evals_result_['training'])
# default metric for non-default objective with custom metric
gbm = lgb.LGBMRegressor(objective='regression_l1',
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('l1', gbm.evals_result_['training'])
self.assertIn('error', gbm.evals_result_['training'])
# non-default metric for non-default objective with custom metric
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='mape',
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('mape', gbm.evals_result_['training'])
self.assertIn('error', gbm.evals_result_['training'])
# multiple metrics for non-default objective with custom metric
gbm = lgb.LGBMRegressor(objective='regression_l1', metric=['l1', 'gamma'],
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 3)
self.assertIn('l1', gbm.evals_result_['training'])
self.assertIn('gamma', gbm.evals_result_['training'])
self.assertIn('error', gbm.evals_result_['training'])
# custom metric (disable default metric for non-default objective)
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='None',
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('error', gbm.evals_result_['training'])
# custom objective, custom metric
# custom metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj,
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('error', gbm.evals_result_['training'])
# non-default regression metric with custom metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric='mape',
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('mape', gbm.evals_result_['training'])
self.assertIn('error', gbm.evals_result_['training'])
# multiple regression metrics with custom metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric=['l2', 'mape'],
**params).fit(eval_metric=constant_metric, **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 3)
self.assertIn('l2', gbm.evals_result_['training'])
self.assertIn('mape', gbm.evals_result_['training'])
self.assertIn('error', gbm.evals_result_['training'])
X, y = load_digits(3, True)
params_fit = {'X': X, 'y': y, 'eval_set': (X, y), 'verbose': False}
# default metric and invalid binary metric is replaced with multiclass alternative
gbm = lgb.LGBMClassifier(**params).fit(eval_metric='binary_error', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('multi_logloss', gbm.evals_result_['training'])
self.assertIn('multi_error', gbm.evals_result_['training'])
# invalid objective is replaced with default multiclass one
# and invalid binary metric is replaced with multiclass alternative
gbm = lgb.LGBMClassifier(objective='invalid_obj',
**params).fit(eval_metric='binary_error', **params_fit)
self.assertEqual(gbm.objective_, 'multiclass')
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('multi_logloss', gbm.evals_result_['training'])
self.assertIn('multi_error', gbm.evals_result_['training'])
# default metric for non-default multiclass objective
# and invalid binary metric is replaced with multiclass alternative
gbm = lgb.LGBMClassifier(objective='ovr',
**params).fit(eval_metric='binary_error', **params_fit)
self.assertEqual(gbm.objective_, 'ovr')
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('multi_logloss', gbm.evals_result_['training'])
self.assertIn('multi_error', gbm.evals_result_['training'])
X, y = load_digits(2, True)
params_fit = {'X': X, 'y': y, 'eval_set': (X, y), 'verbose': False}
# default metric and invalid multiclass metric is replaced with binary alternative
gbm = lgb.LGBMClassifier(**params).fit(eval_metric='multi_error', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 2)
self.assertIn('binary_logloss', gbm.evals_result_['training'])
self.assertIn('binary_error', gbm.evals_result_['training'])
# invalid multiclass metric is replaced with binary alternative for custom objective
gbm = lgb.LGBMClassifier(objective=custom_dummy_obj,
**params).fit(eval_metric='multi_logloss', **params_fit)
self.assertEqual(len(gbm.evals_result_['training']), 1)
self.assertIn('binary_logloss', gbm.evals_result_['training'])
def test_inf_handle(self):
nrows = 100
ncols = 10
X = np.random.randn(nrows, ncols)
y = np.random.randn(nrows) + np.full(nrows, 1e30)
weight = np.full(nrows, 1e10)
params = {'n_estimators': 20, 'verbose': -1}
params_fit = {'X': X, 'y': y, 'sample_weight': weight, 'eval_set': (X, y),
'verbose': False, 'early_stopping_rounds': 5}
gbm = lgb.LGBMRegressor(**params).fit(**params_fit)
np.testing.assert_allclose(gbm.evals_result_['training']['l2'], np.inf)
def test_nan_handle(self):
nrows = 100
ncols = 10
X = np.random.randn(nrows, ncols)
y = np.random.randn(nrows) + np.full(nrows, 1e30)
weight = np.zeros(nrows)
params = {'n_estimators': 20, 'verbose': -1}
params_fit = {'X': X, 'y': y, 'sample_weight': weight, 'eval_set': (X, y),
'verbose': False, 'early_stopping_rounds': 5}
gbm = lgb.LGBMRegressor(**params).fit(**params_fit)
np.testing.assert_allclose(gbm.evals_result_['training']['l2'], np.nan)
def test_first_metric_only(self):
def fit_and_check(eval_set_names, metric_names, assumed_iteration, first_metric_only):
params['first_metric_only'] = first_metric_only
gbm = lgb.LGBMRegressor(**params).fit(**params_fit)
self.assertEqual(len(gbm.evals_result_), len(eval_set_names))
for eval_set_name in eval_set_names:
self.assertIn(eval_set_name, gbm.evals_result_)
self.assertEqual(len(gbm.evals_result_[eval_set_name]), len(metric_names))
for metric_name in metric_names:
self.assertIn(metric_name, gbm.evals_result_[eval_set_name])
actual = len(gbm.evals_result_[eval_set_name][metric_name])
expected = assumed_iteration + (params_fit['early_stopping_rounds']
if eval_set_name != 'training'
and assumed_iteration != gbm.n_estimators else 0)
self.assertEqual(expected, actual)
self.assertEqual(assumed_iteration if eval_set_name != 'training' else gbm.n_estimators,
gbm.best_iteration_)
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_test1, X_test2, y_test1, y_test2 = train_test_split(X_test, y_test, test_size=0.5, random_state=72)
params = {'n_estimators': 30,
'learning_rate': 0.8,
'num_leaves': 15,
'verbose': -1,
'seed': 123}
params_fit = {'X': X_train,
'y': y_train,
'early_stopping_rounds': 5,
'verbose': False}
iter_valid1_l1 = 3
iter_valid1_l2 = 18
iter_valid2_l1 = 11
iter_valid2_l2 = 7
self.assertEqual(len(set([iter_valid1_l1, iter_valid1_l2, iter_valid2_l1, iter_valid2_l2])), 4)
iter_min_l1 = min([iter_valid1_l1, iter_valid2_l1])
iter_min_l2 = min([iter_valid1_l2, iter_valid2_l2])
iter_min = min([iter_min_l1, iter_min_l2])
iter_min_valid1 = min([iter_valid1_l1, iter_valid1_l2])
# training data as eval_set
params_fit['eval_set'] = (X_train, y_train)
fit_and_check(['training'], ['l2'], 30, False)
fit_and_check(['training'], ['l2'], 30, True)
# feval
params['metric'] = 'None'
params_fit['eval_metric'] = lambda preds, train_data: [decreasing_metric(preds, train_data),
constant_metric(preds, train_data)]
params_fit['eval_set'] = (X_test1, y_test1)
fit_and_check(['valid_0'], ['decreasing_metric', 'error'], 1, False)
fit_and_check(['valid_0'], ['decreasing_metric', 'error'], 30, True)
params_fit['eval_metric'] = lambda preds, train_data: [constant_metric(preds, train_data),
decreasing_metric(preds, train_data)]
fit_and_check(['valid_0'], ['decreasing_metric', 'error'], 1, True)
# single eval_set
params.pop('metric')
params_fit.pop('eval_metric')
fit_and_check(['valid_0'], ['l2'], iter_valid1_l2, False)
fit_and_check(['valid_0'], ['l2'], iter_valid1_l2, True)
params_fit['eval_metric'] = "l2"
fit_and_check(['valid_0'], ['l2'], iter_valid1_l2, False)
fit_and_check(['valid_0'], ['l2'], iter_valid1_l2, True)
params_fit['eval_metric'] = "l1"
fit_and_check(['valid_0'], ['l1', 'l2'], iter_min_valid1, False)
fit_and_check(['valid_0'], ['l1', 'l2'], iter_valid1_l1, True)
params_fit['eval_metric'] = ["l1", "l2"]
fit_and_check(['valid_0'], ['l1', 'l2'], iter_min_valid1, False)
fit_and_check(['valid_0'], ['l1', 'l2'], iter_valid1_l1, True)
params_fit['eval_metric'] = ["l2", "l1"]
fit_and_check(['valid_0'], ['l1', 'l2'], iter_min_valid1, False)
fit_and_check(['valid_0'], ['l1', 'l2'], iter_valid1_l2, True)
params_fit['eval_metric'] = ["l2", "regression", "mse"] # test aliases
fit_and_check(['valid_0'], ['l2'], iter_valid1_l2, False)
fit_and_check(['valid_0'], ['l2'], iter_valid1_l2, True)
# two eval_set
params_fit['eval_set'] = [(X_test1, y_test1), (X_test2, y_test2)]
params_fit['eval_metric'] = ["l1", "l2"]
fit_and_check(['valid_0', 'valid_1'], ['l1', 'l2'], iter_min_l1, True)
params_fit['eval_metric'] = ["l2", "l1"]
fit_and_check(['valid_0', 'valid_1'], ['l1', 'l2'], iter_min_l2, True)
params_fit['eval_set'] = [(X_test2, y_test2), (X_test1, y_test1)]
params_fit['eval_metric'] = ["l1", "l2"]
fit_and_check(['valid_0', 'valid_1'], ['l1', 'l2'], iter_min, False)
fit_and_check(['valid_0', 'valid_1'], ['l1', 'l2'], iter_min_l1, True)
params_fit['eval_metric'] = ["l2", "l1"]
fit_and_check(['valid_0', 'valid_1'], ['l1', 'l2'], iter_min, False)
fit_and_check(['valid_0', 'valid_1'], ['l1', 'l2'], iter_min_l2, True)
def test_class_weight(self):
X, y = load_digits(10, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
y_train_str = y_train.astype('str')
y_test_str = y_test.astype('str')
gbm = lgb.LGBMClassifier(n_estimators=10, class_weight='balanced', silent=True)
gbm.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test), (X_test, y_test),
(X_test, y_test), (X_test, y_test)],
eval_class_weight=['balanced', None, 'balanced', {1: 10, 4: 20}, {5: 30, 2: 40}],
verbose=False)
for eval_set1, eval_set2 in itertools.combinations(gbm.evals_result_.keys(), 2):
for metric in gbm.evals_result_[eval_set1]:
np.testing.assert_raises(AssertionError,
np.testing.assert_allclose,
gbm.evals_result_[eval_set1][metric],
gbm.evals_result_[eval_set2][metric])
gbm_str = lgb.LGBMClassifier(n_estimators=10, class_weight='balanced', silent=True)
gbm_str.fit(X_train, y_train_str,
eval_set=[(X_train, y_train_str), (X_test, y_test_str),
(X_test, y_test_str), (X_test, y_test_str), (X_test, y_test_str)],
eval_class_weight=['balanced', None, 'balanced', {'1': 10, '4': 20}, {'5': 30, '2': 40}],
verbose=False)
for eval_set1, eval_set2 in itertools.combinations(gbm_str.evals_result_.keys(), 2):
for metric in gbm_str.evals_result_[eval_set1]:
np.testing.assert_raises(AssertionError,
np.testing.assert_allclose,
gbm_str.evals_result_[eval_set1][metric],
gbm_str.evals_result_[eval_set2][metric])
for eval_set in gbm.evals_result_:
for metric in gbm.evals_result_[eval_set]:
np.testing.assert_allclose(gbm.evals_result_[eval_set][metric],
gbm_str.evals_result_[eval_set][metric])
def test_continue_training_with_model(self):
X, y = load_digits(3, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
init_gbm = lgb.LGBMClassifier(n_estimators=5).fit(X_train, y_train, eval_set=(X_test, y_test),
verbose=False)
gbm = lgb.LGBMClassifier(n_estimators=5).fit(X_train, y_train, eval_set=(X_test, y_test),
verbose=False, init_model=init_gbm)
self.assertEqual(len(init_gbm.evals_result_['valid_0']['multi_logloss']),
len(gbm.evals_result_['valid_0']['multi_logloss']))
self.assertEqual(len(init_gbm.evals_result_['valid_0']['multi_logloss']), 5)
self.assertLess(gbm.evals_result_['valid_0']['multi_logloss'][-1],
init_gbm.evals_result_['valid_0']['multi_logloss'][-1])