-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathtest_basic.py
413 lines (362 loc) · 16.1 KB
/
test_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# coding: utf-8
import os
import numpy as np
import pytest
from scipy import sparse
from sklearn.datasets import dump_svmlight_file, load_svmlight_file
from sklearn.model_selection import train_test_split
import lightgbm as lgb
from lightgbm.compat import PANDAS_INSTALLED, pd_Series
from .utils import load_breast_cancer
def test_basic(tmp_path):
X_train, X_test, y_train, y_test = train_test_split(*load_breast_cancer(return_X_y=True),
test_size=0.1, random_state=2)
feature_names = [f"Column_{i}" for i in range(X_train.shape[1])]
feature_names[1] = "a" * 1000 # set one name to a value longer than default buffer size
train_data = lgb.Dataset(X_train, label=y_train, feature_name=feature_names)
valid_data = train_data.create_valid(X_test, label=y_test)
params = {
"objective": "binary",
"metric": "auc",
"min_data": 10,
"num_leaves": 15,
"verbose": -1,
"num_threads": 1,
"max_bin": 255,
"gpu_use_dp": True
}
bst = lgb.Booster(params, train_data)
bst.add_valid(valid_data, "valid_1")
for i in range(20):
bst.update()
if i % 10 == 0:
print(bst.eval_train(), bst.eval_valid())
assert train_data.get_feature_name() == feature_names
assert bst.current_iteration() == 20
assert bst.num_trees() == 20
assert bst.num_model_per_iteration() == 1
assert bst.lower_bound() == pytest.approx(-2.9040190126976606)
assert bst.upper_bound() == pytest.approx(3.3182142872462883)
tname = str(tmp_path / "svm_light.dat")
model_file = str(tmp_path / "model.txt")
bst.save_model(model_file)
pred_from_matr = bst.predict(X_test)
with open(tname, "w+b") as f:
dump_svmlight_file(X_test, y_test, f)
pred_from_file = bst.predict(tname)
np.testing.assert_allclose(pred_from_matr, pred_from_file)
# check saved model persistence
bst = lgb.Booster(params, model_file=model_file)
assert bst.feature_name() == feature_names
pred_from_model_file = bst.predict(X_test)
# we need to check the consistency of model file here, so test for exact equal
np.testing.assert_array_equal(pred_from_matr, pred_from_model_file)
# check early stopping is working. Make it stop very early, so the scores should be very close to zero
pred_parameter = {"pred_early_stop": True, "pred_early_stop_freq": 5, "pred_early_stop_margin": 1.5}
pred_early_stopping = bst.predict(X_test, **pred_parameter)
# scores likely to be different, but prediction should still be the same
np.testing.assert_array_equal(np.sign(pred_from_matr), np.sign(pred_early_stopping))
# test that shape is checked during prediction
bad_X_test = X_test[:, 1:]
bad_shape_error_msg = "The number of features in data*"
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, bad_X_test)
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, sparse.csr_matrix(bad_X_test))
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, sparse.csc_matrix(bad_X_test))
with open(tname, "w+b") as f:
dump_svmlight_file(bad_X_test, y_test, f)
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, tname)
with open(tname, "w+b") as f:
dump_svmlight_file(X_test, y_test, f, zero_based=False)
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, tname)
def test_chunked_dataset():
X_train, X_test, y_train, y_test = train_test_split(*load_breast_cancer(return_X_y=True), test_size=0.1,
random_state=2)
chunk_size = X_train.shape[0] // 10 + 1
X_train = [X_train[i * chunk_size:(i + 1) * chunk_size, :] for i in range(X_train.shape[0] // chunk_size + 1)]
X_test = [X_test[i * chunk_size:(i + 1) * chunk_size, :] for i in range(X_test.shape[0] // chunk_size + 1)]
train_data = lgb.Dataset(X_train, label=y_train, params={"bin_construct_sample_cnt": 100})
valid_data = train_data.create_valid(X_test, label=y_test, params={"bin_construct_sample_cnt": 100})
train_data.construct()
valid_data.construct()
def test_chunked_dataset_linear():
X_train, X_test, y_train, y_test = train_test_split(*load_breast_cancer(return_X_y=True), test_size=0.1,
random_state=2)
chunk_size = X_train.shape[0] // 10 + 1
X_train = [X_train[i * chunk_size:(i + 1) * chunk_size, :] for i in range(X_train.shape[0] // chunk_size + 1)]
X_test = [X_test[i * chunk_size:(i + 1) * chunk_size, :] for i in range(X_test.shape[0] // chunk_size + 1)]
params = {"bin_construct_sample_cnt": 100, 'linear_tree': True}
train_data = lgb.Dataset(X_train, label=y_train, params=params)
valid_data = train_data.create_valid(X_test, label=y_test, params=params)
train_data.construct()
valid_data.construct()
def test_subset_group():
X_train, y_train = load_svmlight_file(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.train'))
q_train = np.loadtxt(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.train.query'))
lgb_train = lgb.Dataset(X_train, y_train, group=q_train)
assert len(lgb_train.get_group()) == 201
subset = lgb_train.subset(list(range(10))).construct()
subset_group = subset.get_group()
assert len(subset_group) == 2
assert subset_group[0] == 1
assert subset_group[1] == 9
def test_add_features_throws_if_num_data_unequal():
X1 = np.random.random((100, 1))
X2 = np.random.random((10, 1))
d1 = lgb.Dataset(X1).construct()
d2 = lgb.Dataset(X2).construct()
with pytest.raises(lgb.basic.LightGBMError):
d1.add_features_from(d2)
def test_add_features_throws_if_datasets_unconstructed():
X1 = np.random.random((100, 1))
X2 = np.random.random((100, 1))
with pytest.raises(ValueError):
d1 = lgb.Dataset(X1)
d2 = lgb.Dataset(X2)
d1.add_features_from(d2)
with pytest.raises(ValueError):
d1 = lgb.Dataset(X1).construct()
d2 = lgb.Dataset(X2)
d1.add_features_from(d2)
with pytest.raises(ValueError):
d1 = lgb.Dataset(X1)
d2 = lgb.Dataset(X2).construct()
d1.add_features_from(d2)
def test_add_features_equal_data_on_alternating_used_unused(tmp_path):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
names = [f'col_{i}' for i in range(5)]
for j in range(1, 5):
d1 = lgb.Dataset(X[:, :j], feature_name=names[:j]).construct()
d2 = lgb.Dataset(X[:, j:], feature_name=names[j:]).construct()
d1.add_features_from(d2)
d1name = str(tmp_path / "d1.txt")
d1._dump_text(d1name)
d = lgb.Dataset(X, feature_name=names).construct()
dname = str(tmp_path / "d.txt")
d._dump_text(dname)
with open(d1name, 'rt') as d1f:
d1txt = d1f.read()
with open(dname, 'rt') as df:
dtxt = df.read()
assert dtxt == d1txt
def test_add_features_same_booster_behaviour(tmp_path):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
names = [f'col_{i}' for i in range(5)]
for j in range(1, 5):
d1 = lgb.Dataset(X[:, :j], feature_name=names[:j]).construct()
d2 = lgb.Dataset(X[:, j:], feature_name=names[j:]).construct()
d1.add_features_from(d2)
d = lgb.Dataset(X, feature_name=names).construct()
y = np.random.random(100)
d1.set_label(y)
d.set_label(y)
b1 = lgb.Booster(train_set=d1)
b = lgb.Booster(train_set=d)
for k in range(10):
b.update()
b1.update()
dname = str(tmp_path / "d.txt")
d1name = str(tmp_path / "d1.txt")
b1.save_model(d1name)
b.save_model(dname)
with open(dname, 'rt') as df:
dtxt = df.read()
with open(d1name, 'rt') as d1f:
d1txt = d1f.read()
assert dtxt == d1txt
def test_add_features_from_different_sources():
pd = pytest.importorskip("pandas")
n_row = 100
n_col = 5
X = np.random.random((n_row, n_col))
xxs = [X, sparse.csr_matrix(X), pd.DataFrame(X)]
names = [f'col_{i}' for i in range(n_col)]
for x_1 in xxs:
# test that method works even with free_raw_data=True
d1 = lgb.Dataset(x_1, feature_name=names, free_raw_data=True).construct()
d2 = lgb.Dataset(x_1, feature_name=names, free_raw_data=True).construct()
d1.add_features_from(d2)
assert d1.data is None
# test that method works but sets raw data to None in case of immergeable data types
d1 = lgb.Dataset(x_1, feature_name=names, free_raw_data=False).construct()
d2 = lgb.Dataset([X[:n_row // 2, :], X[n_row // 2:, :]],
feature_name=names, free_raw_data=False).construct()
d1.add_features_from(d2)
assert d1.data is None
# test that method works for different data types
d1 = lgb.Dataset(x_1, feature_name=names, free_raw_data=False).construct()
res_feature_names = [name for name in names]
for idx, x_2 in enumerate(xxs, 2):
original_type = type(d1.get_data())
d2 = lgb.Dataset(x_2, feature_name=names, free_raw_data=False).construct()
d1.add_features_from(d2)
assert isinstance(d1.get_data(), original_type)
assert d1.get_data().shape == (n_row, n_col * idx)
res_feature_names += [f'D{idx}_{name}' for name in names]
assert d1.feature_name == res_feature_names
def test_cegb_affects_behavior(tmp_path):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
y = np.random.random(100)
names = [f'col_{i}' for i in range(5)]
ds = lgb.Dataset(X, feature_name=names).construct()
ds.set_label(y)
base = lgb.Booster(train_set=ds)
for k in range(10):
base.update()
basename = str(tmp_path / "basename.txt")
base.save_model(basename)
with open(basename, 'rt') as f:
basetxt = f.read()
# Set extremely harsh penalties, so CEGB will block most splits.
cases = [{'cegb_penalty_feature_coupled': [50, 100, 10, 25, 30]},
{'cegb_penalty_feature_lazy': [1, 2, 3, 4, 5]},
{'cegb_penalty_split': 1}]
for case in cases:
booster = lgb.Booster(train_set=ds, params=case)
for k in range(10):
booster.update()
casename = str(tmp_path / "casename.txt")
booster.save_model(casename)
with open(casename, 'rt') as f:
casetxt = f.read()
assert basetxt != casetxt
def test_cegb_scaling_equalities(tmp_path):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
y = np.random.random(100)
names = [f'col_{i}' for i in range(5)]
ds = lgb.Dataset(X, feature_name=names).construct()
ds.set_label(y)
# Compare pairs of penalties, to ensure scaling works as intended
pairs = [({'cegb_penalty_feature_coupled': [1, 2, 1, 2, 1]},
{'cegb_penalty_feature_coupled': [0.5, 1, 0.5, 1, 0.5], 'cegb_tradeoff': 2}),
({'cegb_penalty_feature_lazy': [0.01, 0.02, 0.03, 0.04, 0.05]},
{'cegb_penalty_feature_lazy': [0.005, 0.01, 0.015, 0.02, 0.025], 'cegb_tradeoff': 2}),
({'cegb_penalty_split': 1},
{'cegb_penalty_split': 2, 'cegb_tradeoff': 0.5})]
for (p1, p2) in pairs:
booster1 = lgb.Booster(train_set=ds, params=p1)
booster2 = lgb.Booster(train_set=ds, params=p2)
for k in range(10):
booster1.update()
booster2.update()
p1name = str(tmp_path / "p1.txt")
# Reset booster1's parameters to p2, so the parameter section of the file matches.
booster1.reset_parameter(p2)
booster1.save_model(p1name)
with open(p1name, 'rt') as f:
p1txt = f.read()
p2name = str(tmp_path / "p2.txt")
booster2.save_model(p2name)
with open(p2name, 'rt') as f:
p2txt = f.read()
assert p1txt == p2txt
def test_consistent_state_for_dataset_fields():
def check_asserts(data):
np.testing.assert_allclose(data.label, data.get_label())
np.testing.assert_allclose(data.label, data.get_field('label'))
assert not np.isnan(data.label[0])
assert not np.isinf(data.label[1])
np.testing.assert_allclose(data.weight, data.get_weight())
np.testing.assert_allclose(data.weight, data.get_field('weight'))
assert not np.isnan(data.weight[0])
assert not np.isinf(data.weight[1])
np.testing.assert_allclose(data.init_score, data.get_init_score())
np.testing.assert_allclose(data.init_score, data.get_field('init_score'))
assert not np.isnan(data.init_score[0])
assert not np.isinf(data.init_score[1])
assert np.all(np.isclose([data.label[0], data.weight[0], data.init_score[0]],
data.label[0]))
assert data.label[1] == pytest.approx(data.weight[1])
assert data.feature_name == data.get_feature_name()
X, y = load_breast_cancer(return_X_y=True)
sequence = np.ones(y.shape[0])
sequence[0] = np.nan
sequence[1] = np.inf
feature_names = [f'f{i}'for i in range(X.shape[1])]
lgb_data = lgb.Dataset(X, sequence,
weight=sequence, init_score=sequence,
feature_name=feature_names).construct()
check_asserts(lgb_data)
lgb_data = lgb.Dataset(X, y).construct()
lgb_data.set_label(sequence)
lgb_data.set_weight(sequence)
lgb_data.set_init_score(sequence)
lgb_data.set_feature_name(feature_names)
check_asserts(lgb_data)
def test_choose_param_value():
original_params = {
"local_listen_port": 1234,
"port": 2222,
"metric": "auc",
"num_trees": 81
}
# should resolve duplicate aliases, and prefer the main parameter
params = lgb.basic._choose_param_value(
main_param_name="local_listen_port",
params=original_params,
default_value=5555
)
assert params["local_listen_port"] == 1234
assert "port" not in params
# should choose a value from an alias and set that value on main param
# if only an alias is used
params = lgb.basic._choose_param_value(
main_param_name="num_iterations",
params=params,
default_value=17
)
assert params["num_iterations"] == 81
assert "num_trees" not in params
# should use the default if main param and aliases are missing
params = lgb.basic._choose_param_value(
main_param_name="learning_rate",
params=params,
default_value=0.789
)
assert params["learning_rate"] == 0.789
# all changes should be made on copies and not modify the original
expected_params = {
"local_listen_port": 1234,
"port": 2222,
"metric": "auc",
"num_trees": 81
}
assert original_params == expected_params
@pytest.mark.skipif(not PANDAS_INSTALLED, reason='pandas is not installed')
@pytest.mark.parametrize(
'y',
[
np.random.rand(10),
np.random.rand(10, 1),
pd_Series(np.random.rand(10)),
pd_Series(['a', 'b']),
[1] * 10,
[[1], [2]]
])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
def test_list_to_1d_numpy(y, dtype):
if isinstance(y, np.ndarray) and len(y.shape) == 2:
with pytest.warns(UserWarning, match='column-vector'):
lgb.basic.list_to_1d_numpy(y)
return
elif isinstance(y, list) and isinstance(y[0], list):
with pytest.raises(TypeError):
lgb.basic.list_to_1d_numpy(y)
return
elif isinstance(y, pd_Series) and y.dtype == object:
with pytest.raises(ValueError):
lgb.basic.list_to_1d_numpy(y)
return
result = lgb.basic.list_to_1d_numpy(y, dtype=dtype)
assert result.size == 10
assert result.dtype == dtype