-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathconfig.cpp
405 lines (371 loc) · 16 KB
/
config.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*!
* Copyright (c) 2016 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#include <LightGBM/config.h>
#include <LightGBM/cuda/vector_cudahost.h>
#include <LightGBM/utils/common.h>
#include <LightGBM/utils/log.h>
#include <LightGBM/utils/random.h>
#include <limits>
namespace LightGBM {
void Config::KV2Map(std::unordered_map<std::string, std::string>* params, const char* kv) {
std::vector<std::string> tmp_strs = Common::Split(kv, '=');
if (tmp_strs.size() == 2 || tmp_strs.size() == 1) {
std::string key = Common::RemoveQuotationSymbol(Common::Trim(tmp_strs[0]));
std::string value = "";
if (tmp_strs.size() == 2) {
value = Common::RemoveQuotationSymbol(Common::Trim(tmp_strs[1]));
}
if (key.size() > 0) {
auto value_search = params->find(key);
if (value_search == params->end()) { // not set
params->emplace(key, value);
} else {
Log::Warning("%s is set=%s, %s=%s will be ignored. Current value: %s=%s",
key.c_str(), value_search->second.c_str(), key.c_str(), value.c_str(),
key.c_str(), value_search->second.c_str());
}
}
} else {
Log::Warning("Unknown parameter %s", kv);
}
}
std::unordered_map<std::string, std::string> Config::Str2Map(const char* parameters) {
std::unordered_map<std::string, std::string> params;
auto args = Common::Split(parameters, " \t\n\r");
for (auto arg : args) {
KV2Map(¶ms, Common::Trim(arg).c_str());
}
ParameterAlias::KeyAliasTransform(¶ms);
return params;
}
void GetBoostingType(const std::unordered_map<std::string, std::string>& params, std::string* boosting) {
std::string value;
if (Config::GetString(params, "boosting", &value)) {
std::transform(value.begin(), value.end(), value.begin(), Common::tolower);
if (value == std::string("gbdt") || value == std::string("gbrt")) {
*boosting = "gbdt";
} else if (value == std::string("dart")) {
*boosting = "dart";
} else if (value == std::string("goss")) {
*boosting = "goss";
} else if (value == std::string("rf") || value == std::string("random_forest")) {
*boosting = "rf";
} else {
Log::Fatal("Unknown boosting type %s", value.c_str());
}
}
}
void ParseMetrics(const std::string& value, std::vector<std::string>* out_metric) {
std::unordered_set<std::string> metric_sets;
out_metric->clear();
std::vector<std::string> metrics = Common::Split(value.c_str(), ',');
for (auto& met : metrics) {
auto type = ParseMetricAlias(met);
if (metric_sets.count(type) <= 0) {
out_metric->push_back(type);
metric_sets.insert(type);
}
}
}
void GetObjectiveType(const std::unordered_map<std::string, std::string>& params, std::string* objective) {
std::string value;
if (Config::GetString(params, "objective", &value)) {
std::transform(value.begin(), value.end(), value.begin(), Common::tolower);
*objective = ParseObjectiveAlias(value);
}
}
void GetMetricType(const std::unordered_map<std::string, std::string>& params, const std::string& objective, std::vector<std::string>* metric) {
std::string value;
if (Config::GetString(params, "metric", &value)) {
std::transform(value.begin(), value.end(), value.begin(), Common::tolower);
ParseMetrics(value, metric);
}
// add names of objective function if not providing metric
if (metric->empty() && value.size() == 0) {
ParseMetrics(objective, metric);
}
}
void GetTaskType(const std::unordered_map<std::string, std::string>& params, TaskType* task) {
std::string value;
if (Config::GetString(params, "task", &value)) {
std::transform(value.begin(), value.end(), value.begin(), Common::tolower);
if (value == std::string("train") || value == std::string("training")) {
*task = TaskType::kTrain;
} else if (value == std::string("predict") || value == std::string("prediction")
|| value == std::string("test")) {
*task = TaskType::kPredict;
} else if (value == std::string("convert_model")) {
*task = TaskType::kConvertModel;
} else if (value == std::string("refit") || value == std::string("refit_tree")) {
*task = TaskType::KRefitTree;
} else if (value == std::string("save_binary")) {
*task = TaskType::kSaveBinary;
} else {
Log::Fatal("Unknown task type %s", value.c_str());
}
}
}
void GetDeviceType(const std::unordered_map<std::string, std::string>& params, std::string* device_type) {
std::string value;
if (Config::GetString(params, "device_type", &value)) {
std::transform(value.begin(), value.end(), value.begin(), Common::tolower);
if (value == std::string("cpu")) {
*device_type = "cpu";
} else if (value == std::string("gpu")) {
*device_type = "gpu";
} else if (value == std::string("cuda")) {
*device_type = "cuda";
} else {
Log::Fatal("Unknown device type %s", value.c_str());
}
}
}
void GetTreeLearnerType(const std::unordered_map<std::string, std::string>& params, std::string* tree_learner) {
std::string value;
if (Config::GetString(params, "tree_learner", &value)) {
std::transform(value.begin(), value.end(), value.begin(), Common::tolower);
if (value == std::string("serial")) {
*tree_learner = "serial";
} else if (value == std::string("feature") || value == std::string("feature_parallel")) {
*tree_learner = "feature";
} else if (value == std::string("data") || value == std::string("data_parallel")) {
*tree_learner = "data";
} else if (value == std::string("voting") || value == std::string("voting_parallel")) {
*tree_learner = "voting";
} else {
Log::Fatal("Unknown tree learner type %s", value.c_str());
}
}
}
void Config::GetAucMuWeights() {
if (auc_mu_weights.empty()) {
// equal weights for all classes
auc_mu_weights_matrix = std::vector<std::vector<double>> (num_class, std::vector<double>(num_class, 1));
for (size_t i = 0; i < static_cast<size_t>(num_class); ++i) {
auc_mu_weights_matrix[i][i] = 0;
}
} else {
auc_mu_weights_matrix = std::vector<std::vector<double>> (num_class, std::vector<double>(num_class, 0));
if (auc_mu_weights.size() != static_cast<size_t>(num_class * num_class)) {
Log::Fatal("auc_mu_weights must have %d elements, but found %d", num_class * num_class, auc_mu_weights.size());
}
for (size_t i = 0; i < static_cast<size_t>(num_class); ++i) {
for (size_t j = 0; j < static_cast<size_t>(num_class); ++j) {
if (i == j) {
auc_mu_weights_matrix[i][j] = 0;
if (std::fabs(auc_mu_weights[i * num_class + j]) > kZeroThreshold) {
Log::Info("AUC-mu matrix must have zeros on diagonal. Overwriting value in position %d of auc_mu_weights with 0.", i * num_class + j);
}
} else {
if (std::fabs(auc_mu_weights[i * num_class + j]) < kZeroThreshold) {
Log::Fatal("AUC-mu matrix must have non-zero values for non-diagonal entries. Found zero value in position %d of auc_mu_weights.", i * num_class + j);
}
auc_mu_weights_matrix[i][j] = auc_mu_weights[i * num_class + j];
}
}
}
}
}
void Config::GetInteractionConstraints() {
if (interaction_constraints == "") {
interaction_constraints_vector = std::vector<std::vector<int>>();
} else {
interaction_constraints_vector = Common::StringToArrayofArrays<int>(interaction_constraints, '[', ']', ',');
}
}
void Config::Set(const std::unordered_map<std::string, std::string>& params) {
// generate seeds by seed.
if (GetInt(params, "seed", &seed)) {
Random rand(seed);
int int_max = std::numeric_limits<int16_t>::max();
data_random_seed = static_cast<int>(rand.NextShort(0, int_max));
bagging_seed = static_cast<int>(rand.NextShort(0, int_max));
drop_seed = static_cast<int>(rand.NextShort(0, int_max));
feature_fraction_seed = static_cast<int>(rand.NextShort(0, int_max));
objective_seed = static_cast<int>(rand.NextShort(0, int_max));
extra_seed = static_cast<int>(rand.NextShort(0, int_max));
}
GetTaskType(params, &task);
GetBoostingType(params, &boosting);
GetObjectiveType(params, &objective);
GetMetricType(params, objective, &metric);
GetDeviceType(params, &device_type);
if (device_type == std::string("cuda")) {
LGBM_config_::current_device = lgbm_device_cuda;
}
GetTreeLearnerType(params, &tree_learner);
GetMembersFromString(params);
GetAucMuWeights();
GetInteractionConstraints();
// sort eval_at
std::sort(eval_at.begin(), eval_at.end());
std::vector<std::string> new_valid;
for (size_t i = 0; i < valid.size(); ++i) {
if (valid[i] != data) {
// Only push the non-training data
new_valid.push_back(valid[i]);
} else {
is_provide_training_metric = true;
}
}
valid = new_valid;
if ((task == TaskType::kSaveBinary) && !save_binary) {
Log::Info("save_binary parameter set to true because task is save_binary");
save_binary = true;
}
if (verbosity == 1) {
LightGBM::Log::ResetLogLevel(LightGBM::LogLevel::Info);
} else if (verbosity == 0) {
LightGBM::Log::ResetLogLevel(LightGBM::LogLevel::Warning);
} else if (verbosity >= 2) {
LightGBM::Log::ResetLogLevel(LightGBM::LogLevel::Debug);
} else {
LightGBM::Log::ResetLogLevel(LightGBM::LogLevel::Fatal);
}
// check for conflicts
CheckParamConflict();
}
bool CheckMultiClassObjective(const std::string& objective) {
return (objective == std::string("multiclass") || objective == std::string("multiclassova"));
}
void Config::CheckParamConflict() {
// check if objective, metric, and num_class match
int num_class_check = num_class;
bool objective_type_multiclass = CheckMultiClassObjective(objective) || (objective == std::string("custom") && num_class_check > 1);
if (objective_type_multiclass) {
if (num_class_check <= 1) {
Log::Fatal("Number of classes should be specified and greater than 1 for multiclass training");
}
} else {
if (task == TaskType::kTrain && num_class_check != 1) {
Log::Fatal("Number of classes must be 1 for non-multiclass training");
}
}
for (std::string metric_type : metric) {
bool metric_type_multiclass = (CheckMultiClassObjective(metric_type)
|| metric_type == std::string("multi_logloss")
|| metric_type == std::string("multi_error")
|| metric_type == std::string("auc_mu")
|| (metric_type == std::string("custom") && num_class_check > 1));
if ((objective_type_multiclass && !metric_type_multiclass)
|| (!objective_type_multiclass && metric_type_multiclass)) {
Log::Fatal("Multiclass objective and metrics don't match");
}
}
if (num_machines > 1) {
is_parallel = true;
} else {
is_parallel = false;
tree_learner = "serial";
}
bool is_single_tree_learner = tree_learner == std::string("serial");
if (is_single_tree_learner) {
is_parallel = false;
num_machines = 1;
}
if (is_single_tree_learner || tree_learner == std::string("feature")) {
is_data_based_parallel = false;
} else if (tree_learner == std::string("data")
|| tree_learner == std::string("voting")) {
is_data_based_parallel = true;
if (histogram_pool_size >= 0
&& tree_learner == std::string("data")) {
Log::Warning("Histogram LRU queue was enabled (histogram_pool_size=%f).\n"
"Will disable this to reduce communication costs",
histogram_pool_size);
// Change pool size to -1 (no limit) when using data parallel to reduce communication costs
histogram_pool_size = -1;
}
}
if (is_data_based_parallel) {
if (!forcedsplits_filename.empty()) {
Log::Fatal("Don't support forcedsplits in %s tree learner",
tree_learner.c_str());
}
}
// Check max_depth and num_leaves
if (max_depth > 0) {
double full_num_leaves = std::pow(2, max_depth);
if (full_num_leaves > num_leaves
&& num_leaves == kDefaultNumLeaves) {
Log::Warning("Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves."
" (num_leaves=%d).",
num_leaves);
}
if (full_num_leaves < num_leaves) {
// Fits in an int, and is more restrictive than the current num_leaves
num_leaves = static_cast<int>(full_num_leaves);
}
}
// force col-wise for gpu & CUDA
if (device_type == std::string("gpu") || device_type == std::string("cuda")) {
force_col_wise = true;
force_row_wise = false;
if (deterministic) {
Log::Warning("Although \"deterministic\" is set, the results ran by GPU may be non-deterministic.");
}
}
// force gpu_use_dp for CUDA
if (device_type == std::string("cuda") && !gpu_use_dp) {
Log::Warning("CUDA currently requires double precision calculations.");
gpu_use_dp = true;
}
// linear tree learner must be serial type and run on CPU device
if (linear_tree) {
if (device_type != std::string("cpu")) {
device_type = "cpu";
Log::Warning("Linear tree learner only works with CPU.");
}
if (tree_learner != std::string("serial")) {
tree_learner = "serial";
Log::Warning("Linear tree learner must be serial.");
}
if (zero_as_missing) {
Log::Fatal("zero_as_missing must be false when fitting linear trees.");
}
if (objective == std::string("regresson_l1")) {
Log::Fatal("Cannot use regression_l1 objective when fitting linear trees.");
}
}
// min_data_in_leaf must be at least 2 if path smoothing is active. This is because when the split is calculated
// the count is calculated using the proportion of hessian in the leaf which is rounded up to nearest int, so it can
// be 1 when there is actually no data in the leaf. In rare cases this can cause a bug because with path smoothing the
// calculated split gain can be positive even with zero gradient and hessian.
if (path_smooth > kEpsilon && min_data_in_leaf < 2) {
min_data_in_leaf = 2;
Log::Warning("min_data_in_leaf has been increased to 2 because this is required when path smoothing is active.");
}
if (is_parallel && (monotone_constraints_method == std::string("intermediate") || monotone_constraints_method == std::string("advanced"))) {
// In distributed mode, local node doesn't have histograms on all features, cannot perform "intermediate" monotone constraints.
Log::Warning("Cannot use \"intermediate\" or \"advanced\" monotone constraints in distributed learning, auto set to \"basic\" method.");
monotone_constraints_method = "basic";
}
if (feature_fraction_bynode != 1.0 && (monotone_constraints_method == std::string("intermediate") || monotone_constraints_method == std::string("advanced"))) {
// "intermediate" monotone constraints need to recompute splits. If the features are sampled when computing the
// split initially, then the sampling needs to be recorded or done once again, which is currently not supported
Log::Warning("Cannot use \"intermediate\" or \"advanced\" monotone constraints with feature fraction different from 1, auto set monotone constraints to \"basic\" method.");
monotone_constraints_method = "basic";
}
if (max_depth > 0 && monotone_penalty >= max_depth) {
Log::Warning("Monotone penalty greater than tree depth. Monotone features won't be used.");
}
if (min_data_in_leaf <= 0 && min_sum_hessian_in_leaf <= kEpsilon) {
Log::Warning(
"Cannot set both min_data_in_leaf and min_sum_hessian_in_leaf to 0. "
"Will set min_data_in_leaf to 1.");
min_data_in_leaf = 1;
}
}
std::string Config::ToString() const {
std::stringstream str_buf;
str_buf << "[boosting: " << boosting << "]\n";
str_buf << "[objective: " << objective << "]\n";
str_buf << "[metric: " << Common::Join(metric, ",") << "]\n";
str_buf << "[tree_learner: " << tree_learner << "]\n";
str_buf << "[device_type: " << device_type << "]\n";
str_buf << SaveMembersToString();
return str_buf.str();
}
} // namespace LightGBM