-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathbasic.py
4585 lines (4125 loc) · 182 KB
/
basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding: utf-8
"""Wrapper for C API of LightGBM."""
import abc
import ctypes
import json
import warnings
from collections import OrderedDict
from copy import deepcopy
from enum import Enum
from functools import wraps
from os import SEEK_END, environ
from os.path import getsize
from pathlib import Path
from tempfile import NamedTemporaryFile
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
import numpy as np
import scipy.sparse
from .compat import PANDAS_INSTALLED, concat, dt_DataTable, pd_CategoricalDtype, pd_DataFrame, pd_Series
from .libpath import find_lib_path
__all__ = [
'Booster',
'Dataset',
'LGBMDeprecationWarning',
'LightGBMError',
'register_logger',
'Sequence',
]
_DatasetHandle = ctypes.c_void_p
_ctypes_int_ptr = Union[
"ctypes._Pointer[ctypes.c_int32]",
"ctypes._Pointer[ctypes.c_int64]"
]
_ctypes_int_array = Union[
"ctypes.Array[ctypes._Pointer[ctypes.c_int32]]",
"ctypes.Array[ctypes._Pointer[ctypes.c_int64]]"
]
_ctypes_float_ptr = Union[
"ctypes._Pointer[ctypes.c_float]",
"ctypes._Pointer[ctypes.c_double]"
]
_ctypes_float_array = Union[
"ctypes.Array[ctypes._Pointer[ctypes.c_float]]",
"ctypes.Array[ctypes._Pointer[ctypes.c_double]]"
]
_LGBM_EvalFunctionResultType = Tuple[str, float, bool]
_LGBM_BoosterBestScoreType = Dict[str, Dict[str, float]]
_LGBM_BoosterEvalMethodResultType = Tuple[str, str, float, bool]
_LGBM_CategoricalFeatureConfiguration = Union[List[str], List[int], str]
_LGBM_FeatureNameConfiguration = Union[List[str], str]
_LGBM_GroupType = Union[
List[float],
List[int],
np.ndarray,
pd_Series
]
_LGBM_InitScoreType = Union[
List[float],
List[List[float]],
np.ndarray,
pd_Series,
pd_DataFrame,
]
_LGBM_TrainDataType = Union[
str,
Path,
np.ndarray,
pd_DataFrame,
dt_DataTable,
scipy.sparse.spmatrix,
"Sequence",
List["Sequence"],
List[np.ndarray]
]
_LGBM_LabelType = Union[
List[float],
List[int],
np.ndarray,
pd_Series,
pd_DataFrame
]
_LGBM_PredictDataType = Union[
str,
Path,
np.ndarray,
pd_DataFrame,
dt_DataTable,
scipy.sparse.spmatrix
]
_LGBM_WeightType = Union[
List[float],
List[int],
np.ndarray,
pd_Series
]
ZERO_THRESHOLD = 1e-35
def _is_zero(x: float) -> bool:
return -ZERO_THRESHOLD <= x <= ZERO_THRESHOLD
def _get_sample_count(total_nrow: int, params: str) -> int:
sample_cnt = ctypes.c_int(0)
_safe_call(_LIB.LGBM_GetSampleCount(
ctypes.c_int32(total_nrow),
_c_str(params),
ctypes.byref(sample_cnt),
))
return sample_cnt.value
class _MissingType(Enum):
NONE = 'None'
NAN = 'NaN'
ZERO = 'Zero'
class _DummyLogger:
def info(self, msg: str) -> None:
print(msg)
def warning(self, msg: str) -> None:
warnings.warn(msg, stacklevel=3)
_LOGGER: Any = _DummyLogger()
_INFO_METHOD_NAME = "info"
_WARNING_METHOD_NAME = "warning"
def _has_method(logger: Any, method_name: str) -> bool:
return callable(getattr(logger, method_name, None))
def register_logger(
logger: Any, info_method_name: str = "info", warning_method_name: str = "warning"
) -> None:
"""Register custom logger.
Parameters
----------
logger : Any
Custom logger.
info_method_name : str, optional (default="info")
Method used to log info messages.
warning_method_name : str, optional (default="warning")
Method used to log warning messages.
"""
if not _has_method(logger, info_method_name) or not _has_method(logger, warning_method_name):
raise TypeError(
f"Logger must provide '{info_method_name}' and '{warning_method_name}' method"
)
global _LOGGER, _INFO_METHOD_NAME, _WARNING_METHOD_NAME
_LOGGER = logger
_INFO_METHOD_NAME = info_method_name
_WARNING_METHOD_NAME = warning_method_name
def _normalize_native_string(func: Callable[[str], None]) -> Callable[[str], None]:
"""Join log messages from native library which come by chunks."""
msg_normalized: List[str] = []
@wraps(func)
def wrapper(msg: str) -> None:
nonlocal msg_normalized
if msg.strip() == '':
msg = ''.join(msg_normalized)
msg_normalized = []
return func(msg)
else:
msg_normalized.append(msg)
return wrapper
def _log_info(msg: str) -> None:
getattr(_LOGGER, _INFO_METHOD_NAME)(msg)
def _log_warning(msg: str) -> None:
getattr(_LOGGER, _WARNING_METHOD_NAME)(msg)
@_normalize_native_string
def _log_native(msg: str) -> None:
getattr(_LOGGER, _INFO_METHOD_NAME)(msg)
def _log_callback(msg: bytes) -> None:
"""Redirect logs from native library into Python."""
_log_native(str(msg.decode('utf-8')))
def _load_lib() -> ctypes.CDLL:
"""Load LightGBM library."""
lib_path = find_lib_path()
lib = ctypes.cdll.LoadLibrary(lib_path[0])
lib.LGBM_GetLastError.restype = ctypes.c_char_p
callback = ctypes.CFUNCTYPE(None, ctypes.c_char_p)
lib.callback = callback(_log_callback) # type: ignore[attr-defined]
if lib.LGBM_RegisterLogCallback(lib.callback) != 0:
raise LightGBMError(lib.LGBM_GetLastError().decode('utf-8'))
return lib
# we don't need lib_lightgbm while building docs
_LIB: ctypes.CDLL
if environ.get('LIGHTGBM_BUILD_DOC', False):
from unittest.mock import Mock # isort: skip
_LIB = Mock(ctypes.CDLL) # type: ignore
else:
_LIB = _load_lib()
_NUMERIC_TYPES = (int, float, bool)
_ArrayLike = Union[List, np.ndarray, pd_Series]
def _safe_call(ret: int) -> None:
"""Check the return value from C API call.
Parameters
----------
ret : int
The return value from C API calls.
"""
if ret != 0:
raise LightGBMError(_LIB.LGBM_GetLastError().decode('utf-8'))
def _is_numeric(obj: Any) -> bool:
"""Check whether object is a number or not, include numpy number, etc."""
try:
float(obj)
return True
except (TypeError, ValueError):
# TypeError: obj is not a string or a number
# ValueError: invalid literal
return False
def _is_numpy_1d_array(data: Any) -> bool:
"""Check whether data is a numpy 1-D array."""
return isinstance(data, np.ndarray) and len(data.shape) == 1
def _is_numpy_column_array(data: Any) -> bool:
"""Check whether data is a column numpy array."""
if not isinstance(data, np.ndarray):
return False
shape = data.shape
return len(shape) == 2 and shape[1] == 1
def _cast_numpy_array_to_dtype(array: np.ndarray, dtype: "np.typing.DTypeLike") -> np.ndarray:
"""Cast numpy array to given dtype."""
if array.dtype == dtype:
return array
return array.astype(dtype=dtype, copy=False)
def _is_1d_list(data: Any) -> bool:
"""Check whether data is a 1-D list."""
return isinstance(data, list) and (not data or _is_numeric(data[0]))
def _is_1d_collection(data: Any) -> bool:
"""Check whether data is a 1-D collection."""
return (
_is_numpy_1d_array(data)
or _is_numpy_column_array(data)
or _is_1d_list(data)
or isinstance(data, pd_Series)
)
def _list_to_1d_numpy(
data: Any,
dtype: "np.typing.DTypeLike",
name: str
) -> np.ndarray:
"""Convert data to numpy 1-D array."""
if _is_numpy_1d_array(data):
return _cast_numpy_array_to_dtype(data, dtype)
elif _is_numpy_column_array(data):
_log_warning('Converting column-vector to 1d array')
array = data.ravel()
return _cast_numpy_array_to_dtype(array, dtype)
elif _is_1d_list(data):
return np.array(data, dtype=dtype, copy=False)
elif isinstance(data, pd_Series):
_check_for_bad_pandas_dtypes(data.to_frame().dtypes)
return np.array(data, dtype=dtype, copy=False) # SparseArray should be supported as well
else:
raise TypeError(f"Wrong type({type(data).__name__}) for {name}.\n"
"It should be list, numpy 1-D array or pandas Series")
def _is_numpy_2d_array(data: Any) -> bool:
"""Check whether data is a numpy 2-D array."""
return isinstance(data, np.ndarray) and len(data.shape) == 2 and data.shape[1] > 1
def _is_2d_list(data: Any) -> bool:
"""Check whether data is a 2-D list."""
return isinstance(data, list) and len(data) > 0 and _is_1d_list(data[0])
def _is_2d_collection(data: Any) -> bool:
"""Check whether data is a 2-D collection."""
return (
_is_numpy_2d_array(data)
or _is_2d_list(data)
or isinstance(data, pd_DataFrame)
)
def _data_to_2d_numpy(
data: Any,
dtype: "np.typing.DTypeLike",
name: str
) -> np.ndarray:
"""Convert data to numpy 2-D array."""
if _is_numpy_2d_array(data):
return _cast_numpy_array_to_dtype(data, dtype)
if _is_2d_list(data):
return np.array(data, dtype=dtype)
if isinstance(data, pd_DataFrame):
_check_for_bad_pandas_dtypes(data.dtypes)
return _cast_numpy_array_to_dtype(data.values, dtype)
raise TypeError(f"Wrong type({type(data).__name__}) for {name}.\n"
"It should be list of lists, numpy 2-D array or pandas DataFrame")
def _cfloat32_array_to_numpy(cptr: "ctypes._Pointer", length: int) -> np.ndarray:
"""Convert a ctypes float pointer array to a numpy array."""
if isinstance(cptr, ctypes.POINTER(ctypes.c_float)):
return np.ctypeslib.as_array(cptr, shape=(length,)).copy()
else:
raise RuntimeError('Expected float pointer')
def _cfloat64_array_to_numpy(cptr: "ctypes._Pointer", length: int) -> np.ndarray:
"""Convert a ctypes double pointer array to a numpy array."""
if isinstance(cptr, ctypes.POINTER(ctypes.c_double)):
return np.ctypeslib.as_array(cptr, shape=(length,)).copy()
else:
raise RuntimeError('Expected double pointer')
def _cint32_array_to_numpy(cptr: "ctypes._Pointer", length: int) -> np.ndarray:
"""Convert a ctypes int pointer array to a numpy array."""
if isinstance(cptr, ctypes.POINTER(ctypes.c_int32)):
return np.ctypeslib.as_array(cptr, shape=(length,)).copy()
else:
raise RuntimeError('Expected int32 pointer')
def _cint64_array_to_numpy(cptr: "ctypes._Pointer", length: int) -> np.ndarray:
"""Convert a ctypes int pointer array to a numpy array."""
if isinstance(cptr, ctypes.POINTER(ctypes.c_int64)):
return np.ctypeslib.as_array(cptr, shape=(length,)).copy()
else:
raise RuntimeError('Expected int64 pointer')
def _c_str(string: str) -> ctypes.c_char_p:
"""Convert a Python string to C string."""
return ctypes.c_char_p(string.encode('utf-8'))
def _c_array(ctype: type, values: List[Any]) -> ctypes.Array:
"""Convert a Python array to C array."""
return (ctype * len(values))(*values) # type: ignore[operator]
def _json_default_with_numpy(obj: Any) -> Any:
"""Convert numpy classes to JSON serializable objects."""
if isinstance(obj, (np.integer, np.floating, np.bool_)):
return obj.item()
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj
def _to_string(x: Union[int, float, str, List]) -> str:
if isinstance(x, list):
val_list = ",".join(str(val) for val in x)
return f"[{val_list}]"
else:
return str(x)
def _param_dict_to_str(data: Optional[Dict[str, Any]]) -> str:
"""Convert Python dictionary to string, which is passed to C API."""
if data is None or not data:
return ""
pairs = []
for key, val in data.items():
if isinstance(val, (list, tuple, set)) or _is_numpy_1d_array(val):
pairs.append(f"{key}={','.join(map(_to_string, val))}")
elif isinstance(val, (str, Path, _NUMERIC_TYPES)) or _is_numeric(val):
pairs.append(f"{key}={val}")
elif val is not None:
raise TypeError(f'Unknown type of parameter:{key}, got:{type(val).__name__}')
return ' '.join(pairs)
class _TempFile:
"""Proxy class to workaround errors on Windows."""
def __enter__(self):
with NamedTemporaryFile(prefix="lightgbm_tmp_", delete=True) as f:
self.name = f.name
self.path = Path(self.name)
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.path.is_file():
self.path.unlink()
class LightGBMError(Exception):
"""Error thrown by LightGBM."""
pass
# DeprecationWarning is not shown by default, so let's create our own with higher level
class LGBMDeprecationWarning(UserWarning):
"""Custom deprecation warning."""
pass
class _ConfigAliases:
# lazy evaluation to allow import without dynamic library, e.g., for docs generation
aliases = None
@staticmethod
def _get_all_param_aliases() -> Dict[str, List[str]]:
buffer_len = 1 << 20
tmp_out_len = ctypes.c_int64(0)
string_buffer = ctypes.create_string_buffer(buffer_len)
ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)])
_safe_call(_LIB.LGBM_DumpParamAliases(
ctypes.c_int64(buffer_len),
ctypes.byref(tmp_out_len),
ptr_string_buffer))
actual_len = tmp_out_len.value
# if buffer length is not long enough, re-allocate a buffer
if actual_len > buffer_len:
string_buffer = ctypes.create_string_buffer(actual_len)
ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)])
_safe_call(_LIB.LGBM_DumpParamAliases(
ctypes.c_int64(actual_len),
ctypes.byref(tmp_out_len),
ptr_string_buffer))
aliases = json.loads(
string_buffer.value.decode('utf-8'),
object_hook=lambda obj: {k: [k] + v for k, v in obj.items()}
)
return aliases
@classmethod
def get(cls, *args) -> Set[str]:
if cls.aliases is None:
cls.aliases = cls._get_all_param_aliases()
ret = set()
for i in args:
ret.update(cls.get_sorted(i))
return ret
@classmethod
def get_sorted(cls, name: str) -> List[str]:
if cls.aliases is None:
cls.aliases = cls._get_all_param_aliases()
return cls.aliases.get(name, [name])
@classmethod
def get_by_alias(cls, *args) -> Set[str]:
if cls.aliases is None:
cls.aliases = cls._get_all_param_aliases()
ret = set(args)
for arg in args:
for aliases in cls.aliases.values():
if arg in aliases:
ret.update(aliases)
break
return ret
def _choose_param_value(main_param_name: str, params: Dict[str, Any], default_value: Any) -> Dict[str, Any]:
"""Get a single parameter value, accounting for aliases.
Parameters
----------
main_param_name : str
Name of the main parameter to get a value for. One of the keys of ``_ConfigAliases``.
params : dict
Dictionary of LightGBM parameters.
default_value : Any
Default value to use for the parameter, if none is found in ``params``.
Returns
-------
params : dict
A ``params`` dict with exactly one value for ``main_param_name``, and all aliases ``main_param_name`` removed.
If both ``main_param_name`` and one or more aliases for it are found, the value of ``main_param_name`` will be preferred.
"""
# avoid side effects on passed-in parameters
params = deepcopy(params)
aliases = _ConfigAliases.get_sorted(main_param_name)
aliases = [a for a in aliases if a != main_param_name]
# if main_param_name was provided, keep that value and remove all aliases
if main_param_name in params.keys():
for param in aliases:
params.pop(param, None)
return params
# if main param name was not found, search for an alias
for param in aliases:
if param in params.keys():
params[main_param_name] = params[param]
break
if main_param_name in params.keys():
for param in aliases:
params.pop(param, None)
return params
# neither of main_param_name, aliases were found
params[main_param_name] = default_value
return params
_MAX_INT32 = (1 << 31) - 1
"""Macro definition of data type in C API of LightGBM"""
_C_API_DTYPE_FLOAT32 = 0
_C_API_DTYPE_FLOAT64 = 1
_C_API_DTYPE_INT32 = 2
_C_API_DTYPE_INT64 = 3
"""Matrix is row major in Python"""
_C_API_IS_ROW_MAJOR = 1
"""Macro definition of prediction type in C API of LightGBM"""
_C_API_PREDICT_NORMAL = 0
_C_API_PREDICT_RAW_SCORE = 1
_C_API_PREDICT_LEAF_INDEX = 2
_C_API_PREDICT_CONTRIB = 3
"""Macro definition of sparse matrix type"""
_C_API_MATRIX_TYPE_CSR = 0
_C_API_MATRIX_TYPE_CSC = 1
"""Macro definition of feature importance type"""
_C_API_FEATURE_IMPORTANCE_SPLIT = 0
_C_API_FEATURE_IMPORTANCE_GAIN = 1
"""Data type of data field"""
_FIELD_TYPE_MAPPER = {
"label": _C_API_DTYPE_FLOAT32,
"weight": _C_API_DTYPE_FLOAT32,
"init_score": _C_API_DTYPE_FLOAT64,
"group": _C_API_DTYPE_INT32
}
"""String name to int feature importance type mapper"""
_FEATURE_IMPORTANCE_TYPE_MAPPER = {
"split": _C_API_FEATURE_IMPORTANCE_SPLIT,
"gain": _C_API_FEATURE_IMPORTANCE_GAIN
}
def _convert_from_sliced_object(data: np.ndarray) -> np.ndarray:
"""Fix the memory of multi-dimensional sliced object."""
if isinstance(data, np.ndarray) and isinstance(data.base, np.ndarray):
if not data.flags.c_contiguous:
_log_warning("Usage of np.ndarray subset (sliced data) is not recommended "
"due to it will double the peak memory cost in LightGBM.")
return np.copy(data)
return data
def _c_float_array(
data: np.ndarray
) -> Tuple[_ctypes_float_ptr, int, np.ndarray]:
"""Get pointer of float numpy array / list."""
if _is_1d_list(data):
data = np.array(data, copy=False)
if _is_numpy_1d_array(data):
data = _convert_from_sliced_object(data)
assert data.flags.c_contiguous
ptr_data: _ctypes_float_ptr
if data.dtype == np.float32:
ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_float))
type_data = _C_API_DTYPE_FLOAT32
elif data.dtype == np.float64:
ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
type_data = _C_API_DTYPE_FLOAT64
else:
raise TypeError(f"Expected np.float32 or np.float64, met type({data.dtype})")
else:
raise TypeError(f"Unknown type({type(data).__name__})")
return (ptr_data, type_data, data) # return `data` to avoid the temporary copy is freed
def _c_int_array(
data: np.ndarray
) -> Tuple[_ctypes_int_ptr, int, np.ndarray]:
"""Get pointer of int numpy array / list."""
if _is_1d_list(data):
data = np.array(data, copy=False)
if _is_numpy_1d_array(data):
data = _convert_from_sliced_object(data)
assert data.flags.c_contiguous
ptr_data: _ctypes_int_ptr
if data.dtype == np.int32:
ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_int32))
type_data = _C_API_DTYPE_INT32
elif data.dtype == np.int64:
ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_int64))
type_data = _C_API_DTYPE_INT64
else:
raise TypeError(f"Expected np.int32 or np.int64, met type({data.dtype})")
else:
raise TypeError(f"Unknown type({type(data).__name__})")
return (ptr_data, type_data, data) # return `data` to avoid the temporary copy is freed
def _is_allowed_numpy_dtype(dtype: type) -> bool:
float128 = getattr(np, 'float128', type(None))
return (
issubclass(dtype, (np.integer, np.floating, np.bool_))
and not issubclass(dtype, (np.timedelta64, float128))
)
def _check_for_bad_pandas_dtypes(pandas_dtypes_series: pd_Series) -> None:
bad_pandas_dtypes = [
f'{column_name}: {pandas_dtype}'
for column_name, pandas_dtype in pandas_dtypes_series.items()
if not _is_allowed_numpy_dtype(pandas_dtype.type)
]
if bad_pandas_dtypes:
raise ValueError('pandas dtypes must be int, float or bool.\n'
f'Fields with bad pandas dtypes: {", ".join(bad_pandas_dtypes)}')
def _data_from_pandas(
data,
feature_name: Optional[_LGBM_FeatureNameConfiguration],
categorical_feature: Optional[_LGBM_CategoricalFeatureConfiguration],
pandas_categorical: Optional[List[List]]
):
if isinstance(data, pd_DataFrame):
if len(data.shape) != 2 or data.shape[0] < 1:
raise ValueError('Input data must be 2 dimensional and non empty.')
if feature_name == 'auto' or feature_name is None:
data = data.rename(columns=str, copy=False)
cat_cols = [col for col, dtype in zip(data.columns, data.dtypes) if isinstance(dtype, pd_CategoricalDtype)]
cat_cols_not_ordered = [col for col in cat_cols if not data[col].cat.ordered]
if pandas_categorical is None: # train dataset
pandas_categorical = [list(data[col].cat.categories) for col in cat_cols]
else:
if len(cat_cols) != len(pandas_categorical):
raise ValueError('train and valid dataset categorical_feature do not match.')
for col, category in zip(cat_cols, pandas_categorical):
if list(data[col].cat.categories) != list(category):
data[col] = data[col].cat.set_categories(category)
if len(cat_cols): # cat_cols is list
data = data.copy(deep=False) # not alter origin DataFrame
data[cat_cols] = data[cat_cols].apply(lambda x: x.cat.codes).replace({-1: np.nan})
if categorical_feature is not None:
if feature_name is None:
feature_name = list(data.columns)
if categorical_feature == 'auto': # use cat cols from DataFrame
categorical_feature = cat_cols_not_ordered
else: # use cat cols specified by user
categorical_feature = list(categorical_feature)
if feature_name == 'auto':
feature_name = list(data.columns)
_check_for_bad_pandas_dtypes(data.dtypes)
df_dtypes = [dtype.type for dtype in data.dtypes]
df_dtypes.append(np.float32) # so that the target dtype considers floats
target_dtype = np.find_common_type(df_dtypes, [])
try:
# most common case (no nullable dtypes)
data = data.to_numpy(dtype=target_dtype, copy=False)
except TypeError:
# 1.0 <= pd version < 1.1 and nullable dtypes, least common case
# raises error because array is casted to type(pd.NA) and there's no na_value argument
data = data.astype(target_dtype, copy=False).values
except ValueError:
# data has nullable dtypes, but we can specify na_value argument and copy will be made
data = data.to_numpy(dtype=target_dtype, na_value=np.nan)
else:
if feature_name == 'auto':
feature_name = None
if categorical_feature == 'auto':
categorical_feature = None
return data, feature_name, categorical_feature, pandas_categorical
def _dump_pandas_categorical(
pandas_categorical: Optional[List[List]],
file_name: Optional[Union[str, Path]] = None
) -> str:
categorical_json = json.dumps(pandas_categorical, default=_json_default_with_numpy)
pandas_str = f'\npandas_categorical:{categorical_json}\n'
if file_name is not None:
with open(file_name, 'a') as f:
f.write(pandas_str)
return pandas_str
def _load_pandas_categorical(
file_name: Optional[Union[str, Path]] = None,
model_str: Optional[str] = None
) -> Optional[List[List]]:
pandas_key = 'pandas_categorical:'
offset = -len(pandas_key)
if file_name is not None:
max_offset = -getsize(file_name)
with open(file_name, 'rb') as f:
while True:
if offset < max_offset:
offset = max_offset
f.seek(offset, SEEK_END)
lines = f.readlines()
if len(lines) >= 2:
break
offset *= 2
last_line = lines[-1].decode('utf-8').strip()
if not last_line.startswith(pandas_key):
last_line = lines[-2].decode('utf-8').strip()
elif model_str is not None:
idx = model_str.rfind('\n', 0, offset)
last_line = model_str[idx:].strip()
if last_line.startswith(pandas_key):
return json.loads(last_line[len(pandas_key):])
else:
return None
class Sequence(abc.ABC):
"""
Generic data access interface.
Object should support the following operations:
.. code-block::
# Get total row number.
>>> len(seq)
# Random access by row index. Used for data sampling.
>>> seq[10]
# Range data access. Used to read data in batch when constructing Dataset.
>>> seq[0:100]
# Optionally specify batch_size to control range data read size.
>>> seq.batch_size
- With random access, **data sampling does not need to go through all data**.
- With range data access, there's **no need to read all data into memory thus reduce memory usage**.
.. versionadded:: 3.3.0
Attributes
----------
batch_size : int
Default size of a batch.
"""
batch_size = 4096 # Defaults to read 4K rows in each batch.
@abc.abstractmethod
def __getitem__(self, idx: Union[int, slice, List[int]]) -> np.ndarray:
"""Return data for given row index.
A basic implementation should look like this:
.. code-block:: python
if isinstance(idx, numbers.Integral):
return self._get_one_line(idx)
elif isinstance(idx, slice):
return np.stack([self._get_one_line(i) for i in range(idx.start, idx.stop)])
elif isinstance(idx, list):
# Only required if using ``Dataset.subset()``.
return np.array([self._get_one_line(i) for i in idx])
else:
raise TypeError(f"Sequence index must be integer, slice or list, got {type(idx).__name__}")
Parameters
----------
idx : int, slice[int], list[int]
Item index.
Returns
-------
result : numpy 1-D array or numpy 2-D array
1-D array if idx is int, 2-D array if idx is slice or list.
"""
raise NotImplementedError("Sub-classes of lightgbm.Sequence must implement __getitem__()")
@abc.abstractmethod
def __len__(self) -> int:
"""Return row count of this sequence."""
raise NotImplementedError("Sub-classes of lightgbm.Sequence must implement __len__()")
class _InnerPredictor:
"""_InnerPredictor of LightGBM.
Not exposed to user.
Used only for prediction, usually used for continued training.
.. note::
Can be converted from Booster, but cannot be converted to Booster.
"""
def __init__(
self,
model_file: Optional[Union[str, Path]] = None,
booster_handle: Optional[ctypes.c_void_p] = None,
pred_parameter: Optional[Dict[str, Any]] = None
):
"""Initialize the _InnerPredictor.
Parameters
----------
model_file : str, pathlib.Path or None, optional (default=None)
Path to the model file.
booster_handle : object or None, optional (default=None)
Handle of Booster.
pred_parameter: dict or None, optional (default=None)
Other parameters for the prediction.
"""
self.handle = ctypes.c_void_p()
self.__is_manage_handle = True
if model_file is not None:
"""Prediction task"""
out_num_iterations = ctypes.c_int(0)
_safe_call(_LIB.LGBM_BoosterCreateFromModelfile(
_c_str(str(model_file)),
ctypes.byref(out_num_iterations),
ctypes.byref(self.handle)))
out_num_class = ctypes.c_int(0)
_safe_call(_LIB.LGBM_BoosterGetNumClasses(
self.handle,
ctypes.byref(out_num_class)))
self.num_class = out_num_class.value
self.num_total_iteration = out_num_iterations.value
self.pandas_categorical = _load_pandas_categorical(file_name=model_file)
elif booster_handle is not None:
self.__is_manage_handle = False
self.handle = booster_handle
out_num_class = ctypes.c_int(0)
_safe_call(_LIB.LGBM_BoosterGetNumClasses(
self.handle,
ctypes.byref(out_num_class)))
self.num_class = out_num_class.value
self.num_total_iteration = self.current_iteration()
self.pandas_categorical = None
else:
raise TypeError('Need model_file or booster_handle to create a predictor')
pred_parameter = {} if pred_parameter is None else pred_parameter
self.pred_parameter = _param_dict_to_str(pred_parameter)
def __del__(self) -> None:
try:
if self.__is_manage_handle:
_safe_call(_LIB.LGBM_BoosterFree(self.handle))
except AttributeError:
pass
def __getstate__(self) -> Dict[str, Any]:
this = self.__dict__.copy()
this.pop('handle', None)
return this
def predict(
self,
data: _LGBM_PredictDataType,
start_iteration: int = 0,
num_iteration: int = -1,
raw_score: bool = False,
pred_leaf: bool = False,
pred_contrib: bool = False,
data_has_header: bool = False,
validate_features: bool = False
) -> Union[np.ndarray, scipy.sparse.spmatrix, List[scipy.sparse.spmatrix]]:
"""Predict logic.
Parameters
----------
data : str, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame or scipy.sparse
Data source for prediction.
If str or pathlib.Path, it represents the path to a text file (CSV, TSV, or LibSVM).
start_iteration : int, optional (default=0)
Start index of the iteration to predict.
num_iteration : int, optional (default=-1)
Iteration used for prediction.
raw_score : bool, optional (default=False)
Whether to predict raw scores.
pred_leaf : bool, optional (default=False)
Whether to predict leaf index.
pred_contrib : bool, optional (default=False)
Whether to predict feature contributions.
data_has_header : bool, optional (default=False)
Whether data has header.
Used only for txt data.
validate_features : bool, optional (default=False)
If True, ensure that the features used to predict match the ones used to train.
Used only if data is pandas DataFrame.
Returns
-------
result : numpy array, scipy.sparse or list of scipy.sparse
Prediction result.
Can be sparse or a list of sparse objects (each element represents predictions for one class) for feature contributions (when ``pred_contrib=True``).
"""
if isinstance(data, Dataset):
raise TypeError("Cannot use Dataset instance for prediction, please use raw data instead")
elif isinstance(data, pd_DataFrame) and validate_features:
data_names = [str(x) for x in data.columns]
ptr_names = (ctypes.c_char_p * len(data_names))()
ptr_names[:] = [x.encode('utf-8') for x in data_names]
_safe_call(
_LIB.LGBM_BoosterValidateFeatureNames(
self.handle,
ptr_names,
ctypes.c_int(len(data_names)),
)
)
data = _data_from_pandas(data, None, None, self.pandas_categorical)[0]
predict_type = _C_API_PREDICT_NORMAL
if raw_score:
predict_type = _C_API_PREDICT_RAW_SCORE
if pred_leaf:
predict_type = _C_API_PREDICT_LEAF_INDEX
if pred_contrib:
predict_type = _C_API_PREDICT_CONTRIB
int_data_has_header = 1 if data_has_header else 0
if isinstance(data, (str, Path)):
with _TempFile() as f:
_safe_call(_LIB.LGBM_BoosterPredictForFile(
self.handle,
_c_str(str(data)),
ctypes.c_int(int_data_has_header),
ctypes.c_int(predict_type),
ctypes.c_int(start_iteration),
ctypes.c_int(num_iteration),
_c_str(self.pred_parameter),
_c_str(f.name)))
preds = np.loadtxt(f.name, dtype=np.float64)
nrow = preds.shape[0]
elif isinstance(data, scipy.sparse.csr_matrix):
preds, nrow = self.__pred_for_csr(
csr=data,
start_iteration=start_iteration,
num_iteration=num_iteration,
predict_type=predict_type
)
elif isinstance(data, scipy.sparse.csc_matrix):
preds, nrow = self.__pred_for_csc(
csc=data,
start_iteration=start_iteration,
num_iteration=num_iteration,
predict_type=predict_type
)
elif isinstance(data, np.ndarray):
preds, nrow = self.__pred_for_np2d(
mat=data,
start_iteration=start_iteration,
num_iteration=num_iteration,
predict_type=predict_type
)
elif isinstance(data, list):
try:
data = np.array(data)
except BaseException:
raise ValueError('Cannot convert data list to numpy array.')
preds, nrow = self.__pred_for_np2d(
mat=data,
start_iteration=start_iteration,