-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
data_parallel_tree_learner.cpp
267 lines (234 loc) · 11.6 KB
/
data_parallel_tree_learner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*!
* Copyright (c) 2016 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#include <cstring>
#include <tuple>
#include <vector>
#include "parallel_tree_learner.h"
namespace LightGBM {
template <typename TREELEARNER_T>
DataParallelTreeLearner<TREELEARNER_T>::DataParallelTreeLearner(const Config* config)
:TREELEARNER_T(config) {
}
template <typename TREELEARNER_T>
DataParallelTreeLearner<TREELEARNER_T>::~DataParallelTreeLearner() {
}
template <typename TREELEARNER_T>
void DataParallelTreeLearner<TREELEARNER_T>::Init(const Dataset* train_data, bool is_constant_hessian) {
// initialize SerialTreeLearner
TREELEARNER_T::Init(train_data, is_constant_hessian);
// Get local rank and global machine size
rank_ = Network::rank();
num_machines_ = Network::num_machines();
auto max_cat_threshold = this->config_->max_cat_threshold;
// need to be able to hold smaller and larger best splits in SyncUpGlobalBestSplit
size_t split_info_size = static_cast<size_t>(SplitInfo::Size(max_cat_threshold) * 2);
size_t histogram_size = static_cast<size_t>(this->share_state_->num_hist_total_bin() * kHistEntrySize);
// allocate buffer for communication
size_t buffer_size = std::max(histogram_size, split_info_size);
input_buffer_.resize(buffer_size);
output_buffer_.resize(buffer_size);
is_feature_aggregated_.resize(this->num_features_);
block_start_.resize(num_machines_);
block_len_.resize(num_machines_);
buffer_write_start_pos_.resize(this->num_features_);
buffer_read_start_pos_.resize(this->num_features_);
global_data_count_in_leaf_.resize(this->config_->num_leaves);
}
template <typename TREELEARNER_T>
void DataParallelTreeLearner<TREELEARNER_T>::ResetConfig(const Config* config) {
TREELEARNER_T::ResetConfig(config);
global_data_count_in_leaf_.resize(this->config_->num_leaves);
}
template <typename TREELEARNER_T>
void DataParallelTreeLearner<TREELEARNER_T>::BeforeTrain() {
TREELEARNER_T::BeforeTrain();
// generate feature partition for current tree
std::vector<std::vector<int>> feature_distribution(num_machines_, std::vector<int>());
std::vector<int> num_bins_distributed(num_machines_, 0);
for (int i = 0; i < this->train_data_->num_total_features(); ++i) {
int inner_feature_index = this->train_data_->InnerFeatureIndex(i);
if (inner_feature_index == -1) { continue; }
if (this->col_sampler_.is_feature_used_bytree()[inner_feature_index]) {
int cur_min_machine = static_cast<int>(ArrayArgs<int>::ArgMin(num_bins_distributed));
feature_distribution[cur_min_machine].push_back(inner_feature_index);
auto num_bin = this->train_data_->FeatureNumBin(inner_feature_index);
if (this->train_data_->FeatureBinMapper(inner_feature_index)->GetMostFreqBin() == 0) {
num_bin -= 1;
}
num_bins_distributed[cur_min_machine] += num_bin;
}
is_feature_aggregated_[inner_feature_index] = false;
}
// get local used feature
for (auto fid : feature_distribution[rank_]) {
is_feature_aggregated_[fid] = true;
}
// get block start and block len for reduce scatter
reduce_scatter_size_ = 0;
for (int i = 0; i < num_machines_; ++i) {
block_len_[i] = 0;
for (auto fid : feature_distribution[i]) {
auto num_bin = this->train_data_->FeatureNumBin(fid);
if (this->train_data_->FeatureBinMapper(fid)->GetMostFreqBin() == 0) {
num_bin -= 1;
}
block_len_[i] += num_bin * kHistEntrySize;
}
reduce_scatter_size_ += block_len_[i];
}
block_start_[0] = 0;
for (int i = 1; i < num_machines_; ++i) {
block_start_[i] = block_start_[i - 1] + block_len_[i - 1];
}
// get buffer_write_start_pos_
int bin_size = 0;
for (int i = 0; i < num_machines_; ++i) {
for (auto fid : feature_distribution[i]) {
buffer_write_start_pos_[fid] = bin_size;
auto num_bin = this->train_data_->FeatureNumBin(fid);
if (this->train_data_->FeatureBinMapper(fid)->GetMostFreqBin() == 0) {
num_bin -= 1;
}
bin_size += num_bin * kHistEntrySize;
}
}
// get buffer_read_start_pos_
bin_size = 0;
for (auto fid : feature_distribution[rank_]) {
buffer_read_start_pos_[fid] = bin_size;
auto num_bin = this->train_data_->FeatureNumBin(fid);
if (this->train_data_->FeatureBinMapper(fid)->GetMostFreqBin() == 0) {
num_bin -= 1;
}
bin_size += num_bin * kHistEntrySize;
}
// sync global data sumup info
std::tuple<data_size_t, double, double> data(this->smaller_leaf_splits_->num_data_in_leaf(),
this->smaller_leaf_splits_->sum_gradients(), this->smaller_leaf_splits_->sum_hessians());
int size = sizeof(data);
std::memcpy(input_buffer_.data(), &data, size);
// global sumup reduce
Network::Allreduce(input_buffer_.data(), size, sizeof(std::tuple<data_size_t, double, double>), output_buffer_.data(), [](const char *src, char *dst, int type_size, comm_size_t len) {
comm_size_t used_size = 0;
const std::tuple<data_size_t, double, double> *p1;
std::tuple<data_size_t, double, double> *p2;
while (used_size < len) {
p1 = reinterpret_cast<const std::tuple<data_size_t, double, double> *>(src);
p2 = reinterpret_cast<std::tuple<data_size_t, double, double> *>(dst);
std::get<0>(*p2) = std::get<0>(*p2) + std::get<0>(*p1);
std::get<1>(*p2) = std::get<1>(*p2) + std::get<1>(*p1);
std::get<2>(*p2) = std::get<2>(*p2) + std::get<2>(*p1);
src += type_size;
dst += type_size;
used_size += type_size;
}
});
// copy back
std::memcpy(reinterpret_cast<void*>(&data), output_buffer_.data(), size);
// set global sumup info
this->smaller_leaf_splits_->Init(std::get<1>(data), std::get<2>(data));
// init global data count in leaf
global_data_count_in_leaf_[0] = std::get<0>(data);
}
template <typename TREELEARNER_T>
void DataParallelTreeLearner<TREELEARNER_T>::FindBestSplits(const Tree* tree) {
TREELEARNER_T::ConstructHistograms(
this->col_sampler_.is_feature_used_bytree(), true);
// construct local histograms
#pragma omp parallel for schedule(static)
for (int feature_index = 0; feature_index < this->num_features_; ++feature_index) {
if (this->col_sampler_.is_feature_used_bytree()[feature_index] == false)
continue;
// copy to buffer
std::memcpy(input_buffer_.data() + buffer_write_start_pos_[feature_index],
this->smaller_leaf_histogram_array_[feature_index].RawData(),
this->smaller_leaf_histogram_array_[feature_index].SizeOfHistgram());
}
// Reduce scatter for histogram
Network::ReduceScatter(input_buffer_.data(), reduce_scatter_size_, sizeof(hist_t), block_start_.data(),
block_len_.data(), output_buffer_.data(), static_cast<comm_size_t>(output_buffer_.size()), &HistogramSumReducer);
this->FindBestSplitsFromHistograms(
this->col_sampler_.is_feature_used_bytree(), true, tree);
}
template <typename TREELEARNER_T>
void DataParallelTreeLearner<TREELEARNER_T>::FindBestSplitsFromHistograms(const std::vector<int8_t>&, bool, const Tree* tree) {
std::vector<SplitInfo> smaller_bests_per_thread(this->share_state_->num_threads);
std::vector<SplitInfo> larger_bests_per_thread(this->share_state_->num_threads);
std::vector<int8_t> smaller_node_used_features =
this->col_sampler_.GetByNode(tree, this->smaller_leaf_splits_->leaf_index());
std::vector<int8_t> larger_node_used_features =
this->col_sampler_.GetByNode(tree, this->larger_leaf_splits_->leaf_index());
double smaller_leaf_parent_output = this->GetParentOutput(tree, this->smaller_leaf_splits_.get());
double larger_leaf_parent_output = this->GetParentOutput(tree, this->larger_leaf_splits_.get());
OMP_INIT_EX();
#pragma omp parallel for schedule(static)
for (int feature_index = 0; feature_index < this->num_features_; ++feature_index) {
OMP_LOOP_EX_BEGIN();
if (!is_feature_aggregated_[feature_index]) continue;
const int tid = omp_get_thread_num();
const int real_feature_index = this->train_data_->RealFeatureIndex(feature_index);
// restore global histograms from buffer
this->smaller_leaf_histogram_array_[feature_index].FromMemory(
output_buffer_.data() + buffer_read_start_pos_[feature_index]);
this->train_data_->FixHistogram(feature_index,
this->smaller_leaf_splits_->sum_gradients(), this->smaller_leaf_splits_->sum_hessians(),
this->smaller_leaf_histogram_array_[feature_index].RawData());
this->ComputeBestSplitForFeature(
this->smaller_leaf_histogram_array_, feature_index, real_feature_index,
smaller_node_used_features[feature_index],
GetGlobalDataCountInLeaf(this->smaller_leaf_splits_->leaf_index()),
this->smaller_leaf_splits_.get(),
&smaller_bests_per_thread[tid],
smaller_leaf_parent_output);
// only root leaf
if (this->larger_leaf_splits_ == nullptr || this->larger_leaf_splits_->leaf_index() < 0) continue;
// construct histgroms for large leaf, we init larger leaf as the parent, so we can just subtract the smaller leaf's histograms
this->larger_leaf_histogram_array_[feature_index].Subtract(
this->smaller_leaf_histogram_array_[feature_index]);
this->ComputeBestSplitForFeature(
this->larger_leaf_histogram_array_, feature_index, real_feature_index,
larger_node_used_features[feature_index],
GetGlobalDataCountInLeaf(this->larger_leaf_splits_->leaf_index()),
this->larger_leaf_splits_.get(),
&larger_bests_per_thread[tid],
larger_leaf_parent_output);
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
auto smaller_best_idx = ArrayArgs<SplitInfo>::ArgMax(smaller_bests_per_thread);
int leaf = this->smaller_leaf_splits_->leaf_index();
this->best_split_per_leaf_[leaf] = smaller_bests_per_thread[smaller_best_idx];
if (this->larger_leaf_splits_ != nullptr && this->larger_leaf_splits_->leaf_index() >= 0) {
leaf = this->larger_leaf_splits_->leaf_index();
auto larger_best_idx = ArrayArgs<SplitInfo>::ArgMax(larger_bests_per_thread);
this->best_split_per_leaf_[leaf] = larger_bests_per_thread[larger_best_idx];
}
SplitInfo smaller_best_split, larger_best_split;
smaller_best_split = this->best_split_per_leaf_[this->smaller_leaf_splits_->leaf_index()];
// find local best split for larger leaf
if (this->larger_leaf_splits_->leaf_index() >= 0) {
larger_best_split = this->best_split_per_leaf_[this->larger_leaf_splits_->leaf_index()];
}
// sync global best info
SyncUpGlobalBestSplit(input_buffer_.data(), input_buffer_.data(), &smaller_best_split, &larger_best_split, this->config_->max_cat_threshold);
// set best split
this->best_split_per_leaf_[this->smaller_leaf_splits_->leaf_index()] = smaller_best_split;
if (this->larger_leaf_splits_->leaf_index() >= 0) {
this->best_split_per_leaf_[this->larger_leaf_splits_->leaf_index()] = larger_best_split;
}
}
template <typename TREELEARNER_T>
void DataParallelTreeLearner<TREELEARNER_T>::Split(Tree* tree, int best_Leaf, int* left_leaf, int* right_leaf) {
TREELEARNER_T::SplitInner(tree, best_Leaf, left_leaf, right_leaf, false);
const SplitInfo& best_split_info = this->best_split_per_leaf_[best_Leaf];
// need update global number of data in leaf
global_data_count_in_leaf_[*left_leaf] = best_split_info.left_count;
global_data_count_in_leaf_[*right_leaf] = best_split_info.right_count;
}
// instantiate template classes, otherwise linker cannot find the code
template class DataParallelTreeLearner<CUDATreeLearner>;
template class DataParallelTreeLearner<GPUTreeLearner>;
template class DataParallelTreeLearner<SerialTreeLearner>;
} // namespace LightGBM