-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
leaf_stability.R
256 lines (236 loc) · 6.35 KB
/
leaf_stability.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# We are going to look at how iterating too much might generate observation instability.
# Obviously, we are in a controlled environment, without issues (real rules).
# Do not do this in a real scenario.
library(lightgbm)
# define helper functions for creating plots
# output of `RColorBrewer::brewer.pal(10, "RdYlGn")`, hardcooded here to avoid a dependency
.diverging_palette <- c(
"#A50026", "#D73027", "#F46D43", "#FDAE61", "#FEE08B"
, "#D9EF8B", "#A6D96A", "#66BD63", "#1A9850", "#006837"
)
.prediction_depth_plot <- function(df) {
plot(
x = df$X
, y = df$Y
, type = "p"
, main = "Prediction Depth"
, xlab = "Leaf Bin"
, ylab = "Prediction Probability"
, pch = 19L
, col = .diverging_palette[df$binned + 1L]
)
legend(
"topright"
, title = "bin"
, legend = sort(unique(df$binned))
, pch = 19L
, col = .diverging_palette[sort(unique(df$binned + 1L))]
, cex = 0.7
)
}
.prediction_depth_spread_plot <- function(df) {
plot(
x = df$binned
, xlim = c(0L, 9L)
, y = df$Z
, type = "p"
, main = "Prediction Depth Spread"
, xlab = "Leaf Bin"
, ylab = "Logloss"
, pch = 19L
, col = .diverging_palette[df$binned + 1L]
)
legend(
"topright"
, title = "bin"
, legend = sort(unique(df$binned))
, pch = 19L
, col = .diverging_palette[sort(unique(df$binned + 1L))]
, cex = 0.7
)
}
.depth_density_plot <- function(df) {
plot(
x = density(df$Y)
, xlim = c(min(df$Y), max(df$Y))
, type = "p"
, main = "Depth Density"
, xlab = "Prediction Probability"
, ylab = "Bin Density"
, pch = 19L
, col = .diverging_palette[df$binned + 1L]
)
legend(
"topright"
, title = "bin"
, legend = sort(unique(df$binned))
, pch = 19L
, col = .diverging_palette[sort(unique(df$binned + 1L))]
, cex = 0.7
)
}
# load some data
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
# setup parameters and we train a model
params <- list(
objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 0.1
, bagging_fraction = 0.1
, bagging_freq = 1L
, bagging_seed = 1L
)
valids <- list(test = dtest)
model <- lgb.train(
params
, dtrain
, 50L
, valids
)
# We create a data.frame with the following structure:
# X = average leaf of the observation throughout all trees
# Y = prediction probability (clamped to [1e-15, 1-1e-15])
# Z = logloss
# binned = binned quantile of average leaf
new_data <- data.frame(
X = rowMeans(predict(
model
, agaricus.test$data
, type = "leaf"
))
, Y = pmin(
pmax(
predict(model, agaricus.test$data)
, 1e-15
)
, 1.0 - 1e-15
)
)
new_data$Z <- -1.0 * (agaricus.test$label * log(new_data$Y) + (1L - agaricus.test$label) * log(1L - new_data$Y))
new_data$binned <- .bincode(
x = new_data$X
, breaks = quantile(
x = new_data$X
, probs = seq_len(9L) / 10.0
)
, right = TRUE
, include.lowest = TRUE
)
new_data$binned[is.na(new_data$binned)] <- 0L
# We can check the binned content
table(new_data$binned)
# We can plot the binned content
# On the second plot, we clearly notice the lower the bin (the lower the leaf value), the higher the loss
# On the third plot, it is smooth!
.prediction_depth_plot(df = new_data)
.prediction_depth_spread_plot(df = new_data)
.depth_density_plot(df = new_data)
# Now, let's show with other parameters
params <- list(
objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0
)
model2 <- lgb.train(
params
, dtrain
, 100L
, valids
)
# We create the data structure, but for model2
new_data2 <- data.frame(
X = rowMeans(predict(
model2
, agaricus.test$data
, type = "leaf"
))
, Y = pmin(
pmax(
predict(
model2
, agaricus.test$data
)
, 1e-15
)
, 1.0 - 1e-15
)
)
new_data2$Z <- -1.0 * (agaricus.test$label * log(new_data2$Y) + (1L - agaricus.test$label) * log(1L - new_data2$Y))
new_data2$binned <- .bincode(
x = new_data2$X
, breaks = quantile(
x = new_data2$X
, probs = seq_len(9L) / 10.0
)
, right = TRUE
, include.lowest = TRUE
)
new_data2$binned[is.na(new_data2$binned)] <- 0L
# We can check the binned content
table(new_data2$binned)
# We can plot the binned content
# On the second plot, we clearly notice the lower the bin (the lower the leaf value), the higher the loss
# On the third plot, it is clearly not smooth! We are severely overfitting the data, but the rules are
# real thus it is not an issue
# However, if the rules were not true, the loss would explode.
.prediction_depth_plot(df = new_data2)
.prediction_depth_spread_plot(df = new_data2)
.depth_density_plot(df = new_data2)
# Now, try with very severe overfitting
params <- list(
objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0
)
model3 <- lgb.train(
params
, dtrain
, 1000L
, valids
)
# We create the data structure, but for model3
new_data3 <- data.frame(
X = rowMeans(predict(
model3
, agaricus.test$data
, type = "leaf"
))
, Y = pmin(
pmax(
predict(
model3
, agaricus.test$data
)
, 1e-15
)
, 1.0 - 1e-15
)
)
new_data3$Z <- -1.0 * (agaricus.test$label * log(new_data3$Y) + (1L - agaricus.test$label) * log(1L - new_data3$Y))
new_data3$binned <- .bincode(
x = new_data3$X
, breaks = quantile(
x = new_data3$X
, probs = seq_len(9L) / 10.0
)
, right = TRUE
, include.lowest = TRUE
)
new_data3$binned[is.na(new_data3$binned)] <- 0L
# We can check the binned content
table(new_data3$binned)
# We can plot the binned content
# On the third plot, it is clearly not smooth! We are severely overfitting the data, but the rules
# are real thus it is not an issue.
# However, if the rules were not true, the loss would explode. See the sudden spikes?
.depth_density_plot(df = new_data3)
# Compare with our second model, the difference is severe. This is smooth.
.depth_density_plot(df = new_data2)