There are easy ways to configure TypeScript to ensure faster compilations and editing experiences. The earlier that these practices can be adopted, the better. Beyond best-practices, there are some common techniques for investigating slow compilations/editing experiences, some common fixes, and some common ways of helping the TypeScript team investigate the issues as a last resort.
- Writing Easy-to-Compile Code
- Using Project References
- Configuring
tsconfig.json
orjsconfig.json
- Configuring Other Build Tools
- Investigating Issues
- Common Issues
- Filing an Issue
Note that the following is not a bullet-proof set of rules. There may be exceptions to each rule depending on your codebase.
Much of the time, a simple type alias to an object type acts very similarly to an interface.
interface Foo { prop: string }
type Bar = { prop: string };
However, and as soon as you need to compose two or more types, you have the option of extending those types with an interface, or intersecting them in a type alias, and that's when the differences start to matter.
Interfaces create a single flat object type that detects property conflicts, which are usually important to resolve!
Intersections on the other hand just recursively merge properties, and in some cases produce never
.
Interfaces also display consistently better, whereas type aliases to intersections can't be displayed in part of other intersections.
Type relationships between interfaces are also cached, as opposed to intersection types as a whole.
A final noteworthy difference is that when checking against a target intersection type, every constituent is checked before checking against the "effective"/"flattened" type.
For this reason, extending types with interface
s/extends
is suggested over creating intersection types.
- type Foo = Bar & Baz & {
- someProp: string;
- }
+ interface Foo extends Bar, Baz {
+ someProp: string;
+ }
Adding type annotations, especially return types, can save the compiler a lot of work. In part, this is because named types tend to be more compact than anonymous types (which the compiler might infer), which reduces the amount of time spent reading and writing declaration files (e.g. for incremental builds). Type inference is very convenient, so there's no need to do this universally - however, it can be a useful thing to try if you've identified a slow section of your code.
- import { otherFunc } from "other";
+ import { otherFunc, OtherType } from "other";
- export function func() {
+ export function func(): OtherType {
return otherFunc();
}
Some hints that this might be worth trying are if your --declaration
emit contains types like import("./some/path").SomeType
, or contains extremely large types that were not written in the source code. Try writing something explicitly, and possibly creating a named type if you need.
--declaration
emit contains types like import("./some/path").SomeType
, or contains extremely large types that were not written in the source code. Try writing something explicitly, and possibly creating a named type if you need.For a very large calculated type, it might be obvious why printing/reading such a type can be costly;
but why is import()
code generation costly? Why is it a problem?
In some cases, --declaration
emit will need to refer to types from another module.
For instance, the declaration emit for the following files...
// foo.ts
export interface Result {
headers: any;
body: string;
}
export async function makeRequest(): Promise<Result> {
throw new Error("unimplemented");
}
// bar.ts
import { makeRequest } from "./foo";
export function doStuff() {
return makeRequest();
}
will produce the following .d.ts
files:
// foo.d.ts
export interface Result {
headers: any;
body: string;
}
export declare function makeRequest(): Promise<Result>;
// bar.d.ts
export declare function doStuff(): Promise<import("./foo").Result>;
Notice the import("./foo").Result
.
TypeScript had to generate code to reference the type named Result
in foo.ts
in the declaration output of bar.ts
.
This involved:
- Figuring out whether the type was accessible through a local name.
- Finding whether type type was accessible through an
import(...)
. - Calculating the most reasonable path to import that file.
- Generating new nodes to represent that type reference.
- Printing those type reference nodes.
For a very big project, this might happen over and over and over again per a module.
Union types are great - they let you express the range of possible values for a type.
interface WeekdaySchedule {
day: "Monday" | "Tuesday" | "Wednesday" | "Thursday" | "Friday";
wake: Time;
startWork: Time;
endWork: Time;
sleep: Time;
}
interface WeekendSchedule {
day: "Saturday" | "Sunday";
wake: Time;
familyMeal: Time;
sleep: Time;
}
declare function printSchedule(schedule: WeekdaySchedule | WeekendSchedule);
However, they also come with a cost.
Every time an argument is passed to printSchedule
, it has to be compared to each element of the union.
For a two-element union, this is trivial and inexpensive.
However, if your union has more than a dozen elements, it can cause real problems in compilation speed.
For instance, to eliminate redundant members from a union, the elements have to be compared pairwise, which is quadratic.
This sort of check might occur when intersecting large unions, where intersecting over each union member can result in enormous types that then need to be reduced.
One way to avoid this is to use subtypes, rather than unions.
interface Schedule {
day: "Monday" | "Tuesday" | "Wednesday" | "Thursday" | "Friday" | "Saturday" | "Sunday";
wake: Time;
sleep: Time;
}
interface WeekdaySchedule extends Schedule {
day: "Monday" | "Tuesday" | "Wednesday" | "Thursday" | "Friday";
startWork: Time;
endWork: Time;
}
interface WeekendSchedule extends Schedule {
day: "Saturday" | "Sunday";
familyMeal: Time;
}
declare function printSchedule(schedule: Schedule);
A more realistic example of this might come up when trying to model every built-in DOM element type.
In this case, it would be preferable to create a base HtmlElement
type with common members which DivElement
, ImgElement
, etc. all extend from, rather than to create an exhaustive union like DivElement | /*...*/ | ImgElement | /*...*/
.
Complex types can be written anywhere a type annotation is allowed.
interface SomeType<T> {
foo<U>(x: U):
U extends TypeA<T> ? ProcessTypeA<U, T> :
U extends TypeB<T> ? ProcessTypeB<U, T> :
U extends TypeC<T> ? ProcessTypeC<U, T> :
U;
}
This is convenient, but today, every time foo
is called, TypeScript has to re-run the conditional type.
What's more, relating any two instances of SomeType
requires re-relating the structure of the return type of foo
.
If the return type in this example was extracted out to a type alias, more information can be cached by the compiler:
type FooResult<U, T> =
U extends TypeA<T> ? ProcessTypeA<U, T> :
U extends TypeB<T> ? ProcessTypeB<U, T> :
U extends TypeC<T> ? ProcessTypeC<U, T> :
U;
interface SomeType<T> {
foo<U>(x: U): FooResult<U, T>;
}
When building up any codebase of a non-trivial size with TypeScript, it is helpful to organize the codebase into several independent projects.
Each project has its own tsconfig.json
that has dependencies on other projects.
This can be helpful to avoid loading too many files in a single compilation, and also makes certain codebase layout strategies easier to put together.
There are some very basic ways of organizing a codebase into projects. As an example, one might be a program with a project for the client, a project for the server, and a project that's shared between the two.
------------
| |
| Shared |
^----------^
/ \
/ \
------------ ------------
| | | |
| Client | | Server |
-----^------ ------^-----
Tests can also be broken into their own project.
------------
| |
| Shared |
^-----^----^
/ | \
/ | \
------------ ------------ ------------
| | | Shared | | |
| Client | | Tests | | Server |
-----^------ ------------ ------^-----
| |
| |
------------ ------------
| Client | | Server |
| Tests | | Tests |
------------ ------------
You can read up more about project references here.
When a workspace becomes so large that it's hard for the editor to handle (and you've used performance tracing to confirm that there are no hotspots, making scale the most likely culprit), it can be helpful to break it down into a collection of projects that reference each other.
If you're working in a monorepo, this can be as simple as creating a project for each package and mirroring the package dependency graph in project references.
Otherwise the process is more ad hoc - you may be able to follow the directory structure or you may have to use carefully chosen include
and exclude
globs.
Some things to keep in mind:
- Aim for evenly-sized projects - avoid having a single humongous project with lots of tiny satellites
- Try to group together files that will be edited together - this will limit the number of projects the editor needs to load
- Separating out test code can help prevent product code from accidentally depending on it
As with any encapsulation mechanism, projects come with a cost. For example, if all projects depend on the same packages (e.g. a popular UI framework), some parts of that package's types will be checked repeatedly - once for each project consuming them. Empirically, it seems that (for a workspace with more than one project) 5-20 projects is an appropriate range - fewer may result in editor slowdowns and more may result in excessive overhead. Some good reasons to split out a project:
- It has a different output location (e.g. because it's a package in a monorepo)
- It requires different settings (e.g.
lib
ormoduleResolution
) - It contains global declarations that you want to scope (either for encapsulation or to limit expensive global rebuilds)
- The editor's language service runs out of memory when trying to process the code as a single project
- In this case, you will want to set
"disableReferencedProjectLoad": true
and"disableSolutionSearching": true
to limit project loading while editing
- In this case, you will want to set
TypeScript and JavaScript users can always configure their compilations with a tsconfig.json
file.
jsconfig.json
files can also be used to configure the editing experience for JavaScript users.
You should always make sure that your configuration files aren't including too many files at once.
Within a tsconfig.json
, there are two ways to specify files in a project.
- the
files
list - the
include
andexclude
lists
The primary difference between the two is that files
expects a list of file paths to source files, and include
/exclude
use globbing patterns to match against files.
While specifying files
will allow TypeScript to quickly load up files up directly, it can be cumbersome if you have many files in your project without just a few top-level entry-points.
Additionally, it's easy to forget to add new files to your tsconfig.json
, which means that you might end up with strange editor behavior where those new files are incorrectly analyzed.
All this can be cumbersome.
include
/exclude
help avoid needing to specify these files, but at a cost: files must be discovered by walking through included directories.
When running through a lot of folders, this can slow compilations down.
Additionally, sometimes a compilation will include lots of unnecessary .d.ts
files and test files, which can increase compilation time and memory overhead.
Finally, while exclude
has some reasonable defaults, certain configurations like mono-repos mean that a "heavy" folders like node_modules
can still end up being included.
For best practices, we recommend the following:
- Specify only input folders in your project (i.e. folders whose source code you want to include for compilation/analysis).
- Don't mix source files from other projects in the same folder.
- If keeping tests in the same folder as other source files, give them a distinct name so they can easily be excluded.
- Avoid large build artifacts and dependency folders like
node_modules
in source directories.
Note: without an exclude
list, node_modules
is excluded by default;
as soon as one is added, it's important to explicitly add node_modules
to the list.
Here is a reasonable tsconfig.json
that demonstrates this in action.
{
"compilerOptions": {
// ...
},
"include": ["src"],
"exclude": ["**/node_modules", "**/.*/"],
}
By default, TypeScript automatically includes every @types
package that it finds in your node_modules
folder, regardless of whether you import it.
This is meant to make certain things "just work" when using Node.js, Jasmine, Mocha, Chai, etc. since these tools/packages aren't imported - they're just loaded into the global environment.
Sometimes this logic can slow down program construction time in both compilation and editing scenarios, and it can even cause issues with multiple global packages with conflicting declarations, causing errors like
Duplicate identifier 'IteratorResult'.
Duplicate identifier 'it'.
Duplicate identifier 'define'.
Duplicate identifier 'require'.
In cases where no global package is required, the fix is as easy as specifying an empty field for the "types"
option in a tsconfig.json
/jsconfig.json
// src/tsconfig.json
{
"compilerOptions": {
// ...
// Don't automatically include anything.
// Only include `@types` packages that we need to import.
"types" : []
},
"files": ["foo.ts"]
}
If you still need a few global packages, add them to the types
field.
// tests/tsconfig.json
{
"compilerOptions": {
// ...
// Only include `@types/node` and `@types/mocha`.
"types" : ["node", "mocha"]
},
"files": ["foo.test.ts"]
}
The --incremental
flag allows TypeScript to save state from the last compilation to a .tsbuildinfo
file.
This file is used to figure out the smallest set of files that might to be re-checked/re-emitted since it last ran, much like how TypeScript's --watch
mode works.
Incremental compiles are enabled by default when using the composite
flag for project references, but can bring the same speed-ups for any project that opts in.
By default, TypeScript performs a full re-check of all .d.ts
files in a project to find issues and inconsistencies; however, this is typically unnecessary.
Most of the time, the .d.ts
files are known to already work - the way that types extend each other was already verified once, and declarations that matter will be checked anyway.
TypeScript provides the option to skip type-checking of the .d.ts
files that it ships with (e.g. lib.d.ts
) using the skipDefaultLibCheck
flag.
Alternatively, you can also enable the skipLibCheck
flag to skip checking all .d.ts
files in a compilation.
These two options can often hide misconfiguration and conflicts in .d.ts
files, so we suggest using them only for faster builds.
Is a list of dogs a list of animals?
That is, is List<Dog>
assignable to List<Animals>
?
The straightforward way to find out is to do a structural comparison of the types, member by member.
Unfortunately, this can be very expensive.
However, if we know enough about List<T>
, we can reduce this assignability check to determining whether Dog
is assignable to Animal
(i.e. without considering each member of List<T>
).
(In particular, we need to know the variance of the type parameter T
.)
The compiler can only take full advantage of this potential speedup if the strictFunctionTypes
flag is enabled (otherwise, it uses the slower, but more lenient, structural check).
For this reason, we recommend building with --strictFunctionTypes
(which is enabled by default under --strict
).
TypeScript compilation is often performed with other build tools in mind - especially when writing web apps that might involve a bundler. While we can only make suggestions for a few build tools, ideally these techniques can be generalized.
Make sure that in addition to reading this section, you read up about performance in your choice of build tool - for example:
Type-checking typically requires information from other files, and can be relatively expensive compared to other steps like transforming/emitting code. Because type-checking can take a little bit longer, it can impact the inner development loop - in other words, you might experience a longer edit/compile/run cycle, and this might be frustrating.
For this reason, some build tools can run type-checking in a separate process without blocking emit. While this means that invalid code can run before TypeScript reports an error in your build tool, you'll often see errors in your editor first, and you won't be blocked for as long from running working code.
An example of this in action is the fork-ts-checker-webpack-plugin
plugin for Webpack, or awesome-typescript-loader which also sometimes does this.
By default, TypeScript's emit requires semantic information that might not be local to a file.
This is to understand how to emit features like const enum
s and namespace
s.
But needing to check other files to generate the output for an arbitrary file can make emit slower.
The need for features that need non-local information is somewhat rare - regular enum
s can be used in place of const enum
s, and modules can be used instead of namespace
s.
For that reason, TypeScript provides the isolatedModules
flag to error on features powered by non-local information.
Enabling isolatedModules
means that your codebase is safe for tools that use TypeScript APIs like transpileModule
or alternative compilers like Babel.
As an example, the following code won't properly work at runtime with isolated file transforms because const enum
values are expected to be inlined; but luckily, isolatedModules
will tell us that early on.
// ./src/fileA.ts
export declare const enum E {
A = 0,
B = 1,
}
// ./src/fileB.ts
import { E } from "./fileA";
console.log(E.A);
// ~
// error: Cannot access ambient const enums when the '--isolatedModules' flag is provided.
Remember:
isolatedModules
doesn't automatically make code generation faster - it just tells you when you're about to use a feature that might not be supported. The thing you're looking for is isolated module emit in different build tools and APIs.
Isolated file emit can be leveraged by using the following tools:
- ts-loader provides a
transpileOnly
flag which performs isolated file emit by usingtranspileModule
. - awesome-typescript-loader provides a
transpileOnly
flag which performs isolated file emit by usingtranspileModule
. - TypeScript's
transpileModule
API can be used directly. - awesome-typescript-loader provides the
useBabel
flag. - babel-loader compiles files in an isolated manner (but does not provide type-checking on its own).
- gulp-typescript enables isolated file emit when
isolatedModules
is enabled. - rollup-plugin-typescript only performs isolated file compilation.
- ts-jest can use be configured with the [
isolatedModules
flag set totrue
]isolatedModules: true(. - ts-node can detect the
"transpileOnly"
option in the"ts-node"
field of atsconfig.json
, and also has a--transpile-only
flag.
In-editor diagnostics are typically fetched a few seconds after typing stops.
ts-server
's performance characteristics will always be related to the performance of type-checking your entire project using tsc
, so the other performance optimization guidance here also applies to improving the editing experience.
As you type, the checker is completely starting from scratch, but it only requests information about what you're typing.
This means that the editing experience can vary based on how much work TypeScript needs to do to check the type of what you are actively editing.
In most editors, like VS Code, diagnostics are requested for all open files, not the entire project.
Accordingly, diagnostics will appear faster compared to checking the entire project with tsc
, but slower than viewing a type with hover, since viewing a type with hover only asks TypeScript to compute and check that specific type.
There are certain ways to get hints of what might be going wrong.
Editor experiences can be impacted by plugins. Try disabling plugins (especially JavaScript/TypeScript-related plugins) to see if that fixes any issues in performance and responsiveness.
Certain editors also have their own troubleshooting guides for performance, so consider reading up on them. For example, Visual Studio Code has its own page for Performance Issues as well.
You can run TypeScript with --extendedDiagnostics
to get a printout of where the compiler is spending its time.
Files: 6
Lines: 24906
Nodes: 112200
Identifiers: 41097
Symbols: 27972
Types: 8298
Memory used: 77984K
Assignability cache size: 33123
Identity cache size: 2
Subtype cache size: 0
I/O Read time: 0.01s
Parse time: 0.44s
Program time: 0.45s
Bind time: 0.21s
Check time: 1.07s
transformTime time: 0.01s
commentTime time: 0.00s
I/O Write time: 0.00s
printTime time: 0.01s
Emit time: 0.01s
Total time: 1.75s
Note that
Total time
won't be the sum of all times preceding it, since there is some overlap and some work is not instrumented.
The most relevant information for most users is:
Field | Meaning |
---|---|
Files |
the number of files that the program is including (use --listFilesOnly to see what they are). |
I/O Read time |
time spent reading from the file system - this includes traversing include 'd folders. |
Parse time |
time spent scanning and parsing the program |
Program time |
combined time spent performing reading from the file system, scanning and parsing the program, and other calculation of the program graph. These steps are intermingled and combined here because files need to be resolved and loaded once they're included via import s and export s. |
Bind time |
Time spent building up various semantic information that is local to a single file. |
Check time |
Time spent type-checking the program. |
transformTime time |
Time spent rewriting TypeScript ASTs (trees that represent source files) into forms that work in older runtimes. |
commentTime |
Time spent calculating comments in output files. |
I/O Write time |
Time spent writing/updating files on disk. |
printTime |
Time spent calculating the string representation of an output file and emitting it to disk. |
Things that you might want to ask given this input:
- Does the number of files/number of lines of code roughly correspond to the number of files in your project? Try running
--listFiles
if not. - Does
Program time
orI/O Read time
seem fairly high? Ensure yourinclude
/exclude
settings are configured correctly. - Do other times seem off? You might want to file an issue! Things you can do to help diagnose it might be
- Running with
emitDeclarationOnly
ifprintTime
is high. - Read up instructions on Reporting Compiler Performance Issues.
- Running with
It's not always obvious what settings a compilation is being run with when running tsc
, especially given that tsconfig.json
s can extend other configuration files.
showConfig
can explain what tsc
will calculate for an invocation.
tsc --showConfig
# or to select a specific config file...
tsc --showConfig -p tsconfig.json
Sometimes you might be surprised to find out TypeScript is reading more files than it should be - but which files is it actually reading?
listFilesOnly
can tell you.
tsc --listFilesOnly
Note: --listFiles
is a somewhat-deprecated version of this flag. It is usually less desirable because --listFiles
will still perform a full compilation, whereas --listFilesOnly
will quit as soon as it manages to find every file that a compilation would need.
Running with explainFiles
can help explain why a file was included in a compilation.
The emit is somewhat verbose, so you might want to redirect output to a file.
tsc --explainFiles > explanations.txt
If you find a file that shouldn't be present, you may need to look into fixing up your include
/exclude
lists in your tsconfig.json
, or alternatively, you might need to adjust other settings like types
, typeRoots
, or paths
.
While explainFiles
can point out how a file made its way into your program, traceResolution
can help diagnose the precise steps that were taken in resolving an import path.
The emit is somewhat verbose, so you might want to redirect output to a file.
tsc --traceResolution > resolutions.txt
You might find that there are issues with your module
/moduleResolution
settings, or even that your dependencies' package.json
files are not configured correctly.
Much of the time, users run into slow performance using 3rd party build tools like Gulp, Rollup, Webpack, etc.
Running with tsc --extendedDiagnostics
to find major discrepancies between using TypeScript and the tool can indicate external misconfiguration or inefficiencies.
Some questions to keep in mind:
- Is there a major difference in build times between
tsc
and the build tool with TypeScript integration? - If the build tool provides diagnostics, is there a difference between TypeScript's resolution and the build tool's?
- Does the build tool have its own configuration that could be the cause?
- Does the build tool have configuration for its TypeScript integration that could be the cause? (e.g. options for ts-loader?)
Sometimes TypeScript's type-checking can be impacted by computationally intensive .d.ts
files.
This is rare, but can happen.
Upgrading to a newer version of TypeScript (which can be more efficient) or to a newer version of an @types
package (which may have reverted a regression) can often solve the issue.
In some cases, the approaches above might not give you enough insight to understand why TypeScript feels slow.
TypeScript 4.1 and higher provides a --generateTrace
option that can give you a sense of the work the compiler is spending time on.
--generateTrace
will create an output file that can be analyzed by the @typescript/analyze-trace
utility, or within Edge or Chrome.
Ideally, TypeScript will be able to compile your project without any errors, though it's not a strict requirement for tracing.
Once you're ready to get a trace, you can run TypeScript with the --generateTrace
flag.
tsc -p ./some/project/src/tsconfig.json --generateTrace tracing_output_folder
In some cases, you can also take a trace from your editor. In Visual Studio Code, that can be toggled by setting TypeScript > Tsserver: Enable Tracing
in the UI or adding the following JSON setting:
"typescript.tsserver.enableTracing": true,
To quickly list performance hot-spots, you can install and run @typescript/analyze-trace from npm.
Alternatively, you can review the details manually:
- Visit
about://tracing
on Edge/Chrome, - Click on the
Load
button at the top left, - Open the generated JSON file (
trace.*.json
) in your output directory.
Note that, even if your build doesn't directly invoke tsc
(e.g. because you use a bundler) or the slowdown you're seeing is in the editor, collecting and interpreting a trace from tsc
will generally be much easier than trying to investigate your slowdown directly and will still produce representative results.
You can read more about performance tracing in more detail here.
Warning
A performance trace may include information from your workspace, including file paths and source code. If you have any concerns about posting this publicly on GitHub, let us know and you can share the details privately.
Warning
The format of performance trace files is not stable, and may change from version to version.
Once you've trouble-shooted, you might want to explore some fixes to common issues. If the following solutions don't work, it may be worth filing an issue.
As mentioned above, the include
/exclude
options can be misused in several ways.
Problem | Cause | Fix |
---|---|---|
node_modules was accidentally included from deeper folder |
exclude was not set |
"exclude": ["**/node_modules", "**/.*/"] |
node_modules was accidentally included from deeper folder |
"exclude": ["node_modules"] |
"exclude": ["**/node_modules", "**/.*/"] |
Hidden dot files (e.g. .git ) were accidentally included |
"exclude": ["**/node_modules"] |
"exclude": ["**/node_modules", "**/.*/"] |
Unexpected files are being included. | include was not set |
"include": ["src"] |
If your project is already properly and optimally configured, you may want to file an issue.
The best reports of performance issues contain easily obtainable and minimal reproductions of the problem.
In other words, a codebase that can easily be cloned over git that contains only a few files.
They require either no external integration with build tools - they can either be invoked via tsc
or use isolated code which consumes the TypeScript API.
Codebases that require complex invocations and setups cannot be prioritized.
We understand that this is not always easy to achieve - specifically, because it is hard to isolate the source of a problem within a codebase, and because sharing intellectual property may be an issue. In some cases, the team will be willing to send a non-disclosure agreement (NDA) if we believe the issue is highly impactful.
Regardless of whether a reproduction is possible, following these directions when filing issues will help us provide you with performance fixes.
Sometimes you'll witness performance issues in both build times as well as editing scenarios. In these cases, it's best to focus on the TypeScript compiler.
First, a nightly version of TypeScript should be used to ensure you're not hitting a resolved issue:
npm install --save-dev typescript@next
# or
yarn add typescript@next --dev
A compiler perf issue should include
- The version of TypeScript that was installed (i.e.
npx tsc -v
oryarn tsc -v
) - The version of Node on which TypeScript ran (i.e.
node -v
) - The output of running with
extendedDiagnostics
(tsc --extendedDiagnostics -p tsconfig.json
) - Ideally, a project that demonstrates the issues being encountered.
- Output logs from profiling the compiler (
isolate-*-*-*.log
and*.cpuprofile
files)
Performance traces are meant to help teams figure out build performance issues in their own codebases; however, they can also be useful for the TypeScript team in diagnosing and fixing issues. See the above section on performance traces and continue reading more on our dedicated performance tracing page.
You can provide the team with diagnostic traces by running dexnode
alongside TypeScript with the --generateCpuProfile
flag:
npm exec dexnode -- ./node_modules/typescript/lib/tsc.js --generateCpuProfile profile.cpuprofile -p tsconfig.json
Here ./node_modules/typescript/lib/tsc.js
can be replaced with any path to where your version of the TypeScript compiler is installed, and tsconfig.json
can be any TypeScript configuration file.
profile.cpuprofile
is an output file of your choice.
This will generate two files:
dexnode
will emit to a file of theisolate-*-*-*.log
(e.g.isolate-00000176DB2DF130-17676-v8.log
).--generateCpuProfile
will emit to a file with the name of your choice. In the above example, it will be a file namedprofile.cpuprofile
.
Warning
These files may include information from your workspace, including file paths and source code. Both of these files are readable as plain-text, and you can modify them before attaching them as part of a GitHub issue. (e.g. to scrub them of file paths that may expose internal-only information).
However, if you have any concerns about posting these publicly on GitHub, let us know and you can share the details privately.
pprof is a helpful utility for visualizing CPU and memory profiles.
pprof has different visualization modes that may make problem areas more obvious, and its profiles tend to be smaller than those produced from --generateCpuProfile
.
The easiest way to generate a profile for pprof is to use pprof-it. There are different ways to use pprof-it, but a quick way is to use npx or a similar tool:
npx pprof-it ./node_modules/typescript/lib/tsc.js ...
You can also install it locally:
npm install --no-save pprof-it
and run certain build scripts via npm, npx, and similar tools with the --node-option
flag:
npm --node-option="--require pprof-it" run <your-script-name>
To actually view the generated profile with pprof, the Go toolset is required at minimum, and Graphviz is required for certain visualization capabilities. See more here.
Alternatively, you can use SpeedScope directly from your browser.
Warning
These files may include information from your workspace, including file paths.
pprof-it does recognize the PPROF_SANITIZE
environment variable to sanitize your profiles before posting them publicly.
You can also share an unsanitized profile privately if you would prefer.
Perceived editing performance is frequently impacted by a number of things, and the only thing within the TypeScript team's control is the performance of the JavaScript/TypeScript language service, as well as the integration between that language service and certain editors (i.e. Visual Studio, Visual Studio Code, Visual Studio for Mac, and Sublime Text). Ensure that all 3rd-party plugins are turned off in your editor to determine whether there is an issue with TypeScript itself.
Editing performance issues are slightly more involved, but the same ideas apply: clone-able minimal repro codebases are ideal, and though in some cases the team will be able to sign an NDA to investigate and isolate issues.
Including the output from tsc --extendedDiagnostics
is always good context, but taking a TSServer trace is the most helpful.
- Open up your command palette and either
- open your global settings by entering
Preferences: Open User Settings
- open your local project by entering
Preferences: Open Workspace Settings
- open your global settings by entering
- Set the option
"typescript.tsserver.log": "verbose",
- Restart VS Code and reproduce the problem
- In VS Code, run the
TypeScript: Open TS Server log
command - This should open the
tsserver.log
file.
Warning
A TSServer log may include information from your workspace, including file paths and source code. If you have any concerns about posting this publicly on GitHub, let us know and you can share the details privately.