-
Notifications
You must be signed in to change notification settings - Fork 30
/
utils.py
98 lines (83 loc) · 3.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# --------------------------------------------------------
# Focal Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Jianwei Yang (jianwyan@microsoft.com)
# Based on Swin Transformer written by Zhe Liu
# --------------------------------------------------------
import os
import torch
import torch.distributed as dist
from timm.models.layers import trunc_normal_
try:
# noinspection PyUnresolvedReferences
from apex import amp
except ImportError:
amp = None
def load_checkpoint(config, model, optimizer, lr_scheduler, logger):
logger.info(f"==============> Resuming form {config.MODEL.RESUME}....................")
if config.MODEL.RESUME.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
config.MODEL.RESUME, map_location='cpu', check_hash=True)
elif os.path.exists(config.MODEL.RESUME):
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
else:
logger.info(f"==============> Cannot find {config.MODEL.RESUME}....................")
return None
msg = model.load_state_dict(checkpoint['model'], strict=False)
logger.info(msg)
max_accuracy = 0.0
if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
config.defrost()
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
config.freeze()
if 'amp' in checkpoint and config.AMP_OPT_LEVEL != "O0" and checkpoint['config'].AMP_OPT_LEVEL != "O0":
amp.load_state_dict(checkpoint['amp'])
logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
if 'max_accuracy' in checkpoint:
max_accuracy = checkpoint['max_accuracy']
del checkpoint
torch.cuda.empty_cache()
return max_accuracy
def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, logger):
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'config': config}
if config.AMP_OPT_LEVEL != "O0":
save_state['amp'] = amp.state_dict()
save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
logger.info(f"{save_path} saving......")
torch.save(save_state, save_path)
logger.info(f"{save_path} saved !!!")
def get_grad_norm(parameters, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm
def auto_resume_helper(output_dir):
checkpoints = os.listdir(output_dir)
checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
print(f"All checkpoints founded in {output_dir}: {checkpoints}")
if len(checkpoints) > 0:
latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
print(f"The latest checkpoint founded: {latest_checkpoint}")
resume_file = latest_checkpoint
else:
resume_file = None
return resume_file
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= dist.get_world_size()
return rt