-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathmsa_perp.py
130 lines (119 loc) · 5.54 KB
/
msa_perp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import evodiff.utils
from evodiff.pretrained import MSA_D3PM_UNIFORM_RANDSUB, MSA_D3PM_UNIFORM_MAXSUB, MSA_D3PM_BLOSUM_RANDSUB, \
MSA_D3PM_BLOSUM_MAXSUB, MSA_OA_DM_RANDSUB, MSA_OA_DM_MAXSUB, ESM_MSA_1b
from evodiff.losses import D3PMCELoss
from sequence_models.losses import MaskedCrossEntropyLossMSA
import torch
from tqdm import tqdm
import pandas as pd
from evodiff.plot import plot_perp_group_masked, plot_perp_group_d3pm
import argparse
import os
def main():
# set seeds
_ = torch.manual_seed(0)
np.random.seed(0)
parser = argparse.ArgumentParser()
parser.add_argument('--model-type', type=str, default='D3PM_BLOSUM_38M',
help='Choice of: msa_d3pm_uniform_randsub, msa_d3pm_uniform_maxsub,\
msa_d3pm_blosum_randsub, msa_d3pm_blosum_maxsub,\
msa_oa_dm_randsub, msa_oa_dm_maxsub, esm_msa_1b')
parser.add_argument('--subsampling', type=str, default='random') # or MaxHamming
args = parser.parse_args()
save_name = args.model_type
if args.model_type=='msa_d3pm_uniform_randsub':
checkpoint = MSA_D3PM_UNIFORM_RANDSUB()
elif args.model_type=='msa_d3pm_uniform_maxsub':
checkpoint = MSA_D3PM_UNIFORM_MAXSUB()
elif args.model_type=='msa_d3pm_blosum_randsub':
checkpoint = MSA_D3PM_BLOSUM_RANDSUB()
elif args.model_type=='msa_d3pm_blosum_maxsub':
checkpoint = MSA_D3PM_BLOSUM_MAXSUB()
elif args.model_type=='msa_oa_dm_randsub':
checkpoint = MSA_OA_DM_RANDSUB()
elif args.model_type=='msa_oa_dm_maxsub':
checkpoint = MSA_OA_DM_MAXSUB()
elif args.model_type=='esm_msa_1b':
checkpoint = ESM_MSA_1b()
else:
print("Please select valid model, i don't understand:", args.model_type)
try:
data_top_dir = os.getenv('AMLT_DATA_DIR') + '/data/data/data/'
except:
data_top_dir = 'data/'
num_seqs=2000
data = evodiff.data.get_valid_msas(data_top_dir, data_dir='openfold/', selection_type=args.subsampling, n_sequences=64, max_seq_len=512,
out_path='../evodiff/ref/')
losses = []
n_tokens = []
time_loss_data = []
for i in tqdm(range(num_seqs)): #len(data))):
r_idx = np.random.choice(len(data))
sequence = [data[r_idx]]
t, loss, tokens = sum_nll_mask(sequence, checkpoint)
if not np.isnan(loss): #esm-1b predicts nans at large % mask
losses.append(loss)
n_tokens.append(tokens)
if args.model_type == 'msa_oa_ar_randsub' or args.model_type == 'msa_oa_ar_maxsub' or args.model_type =='esm_msa_1b':
time_loss_data.append([t, loss, tokens])
else:
time_loss_data.append([t.item(), loss, tokens])
if i % 1000 == 0:
ll = -sum(losses) / sum(n_tokens)
perp = np.exp(-ll)
print(i, "samples, perp:", np.mean(perp))
print("Final test perp:", np.exp(sum(losses)/sum(n_tokens)))
df = pd.DataFrame(time_loss_data, columns=['time', 'loss', 'tokens'])
df.to_csv('plots/perp_df_' + save_name + '.csv')
if checkpoint[-1] == 'd3pm':
plot_perp_group_d3pm(df, save_name)
else:
plot_perp_group_masked(df, save_name)
def sum_nll_mask(sequence, checkpoint):
model, collater, tokenizer, scheme = checkpoint
model.eval().cuda() # Use model.eval() if using CPU
# D3PM Collater returns; src, src_one_hot, timesteps, tokenized, tokenized_one_hot, Q, Q_bar, q_x
if scheme == 'd3pm':
src, src_onehot, timestep, tgt, tgt_onehot, Q, Q_bar, q = collater(sequence)
input_mask = (src != tokenizer.pad_id).float() # placeholder
input_mask = input_mask.cuda()
timestep = timestep.cuda()
elif scheme == 'mask':
src, tgt, mask = collater(sequence)
input_mask = (src != tokenizer.pad_id).float() # placeholder, should be no pads since not batching
mask = mask.cuda()
input_mask = input_mask.cuda()
elif scheme == 'esm-mask':
src, tgt, mask = collater(sequence)
input_mask = (src != tokenizer.padding_idx).float() # placeholder, should be no pads since not batching
mask = mask.cuda()
input_mask = input_mask.cuda()
src = src.cuda() # Comment all variable.cuda() lines if using CPU
tgt = tgt.cuda()
with torch.no_grad():
if scheme == 'd3pm':
outputs = model(src, timestep) # outputs are x_tilde_0 (predicted tgt)
elif scheme == 'esm-mask':
outputs = model(src, repr_layers=[33], return_contacts=True)
outputs = outputs["logits"]
else:
outputs = model(src)
# Get loss (NLL ~= CE)
if scheme == 'd3pm':
loss_func = D3PMCELoss(reduction='sum',tokenizer=tokenizer, sequences=False)
nll_loss = loss_func(outputs, tgt, input_mask)
t_out=timestep
tokens_msa = tgt.squeeze().shape
tokens = tokens_msa[0]*tokens_msa[1]
elif scheme == 'mask' or scheme == 'esm-mask':
if scheme == 'esm-mask':
loss_func = MaskedCrossEntropyLossMSA(ignore_index=tokenizer.padding_idx, reweight=False)
else:
loss_func = MaskedCrossEntropyLossMSA(ignore_index=tokenizer.pad_id, reweight=False)
ce_loss, nll_loss = loss_func(outputs, tgt, mask, input_mask) # returns a sum
tokens = mask.sum().item()
t_out = tokens / int(tgt.squeeze().shape[0]*tgt.squeeze().shape[1])
return t_out, nll_loss.item(), tokens # return timestep sampled (or % masked), sum of losses, and sum of tokens
if __name__ == '__main__':
main()