Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft 0.1 release plan #72

Closed
scarlett2018 opened this issue Oct 21, 2020 · 5 comments
Closed

Draft 0.1 release plan #72

scarlett2018 opened this issue Oct 21, 2020 · 5 comments
Assignees

Comments

@scarlett2018
Copy link
Member

The issue is to list out what we would like to mark as 0.1.

@scarlett2018 scarlett2018 added the enhancement New feature or request label Oct 21, 2020
@nnfbot
Copy link

nnfbot commented Oct 21, 2020

Thanks for the report @scarlett2018! I will look into it ASAP! (I'm a bot).

@scarlett2018 scarlett2018 added draft iteration plan and removed enhancement New feature or request labels Oct 21, 2020
@wenxcs wenxcs pinned this issue Oct 26, 2020
@AlisaChen98
Copy link
Contributor

AlisaChen98 commented Nov 2, 2020

  • Build and Installation:

    • Support out-of-box installation with docker image
    • Support source code install on native system and docker
    • Support devices like CUDA GPUs, and ROCm GPUs.
  • Models, Framework and Operators:

    • Support DNN model formats including TensorFlow and ONNX
    • Support commonly used models including AlexNet, VGG11, ResNet50, seq2seq, BERT, etc.
    • Support more than 100 commonly used operators.
  • Model Compilation and Execution:

    • Provide a full-stack optimization mechanism, including data-flow graph optimizations, model-specific kernel selection, kernel co-scheduling, etc.
    • Provide ahead-of-time and source-to-source(model-to-code) compilation to reduce runtime overhead
    • Remove third-party library or framework dependencies
  • Usability:

    • Provide command line tool nnfusion
    • Provide tools for users to freeze TensorFlow and PyTorch models
    • Provide flexible way to customize optimization through direct code modification on generated code

@AlisaChen98
Copy link
Contributor

AlisaChen98 commented Nov 2, 2020

NNFusion V0.1 发版说明

  • 构建及安装
    • 支持使用docker镜像直接安装
    • 支持根据项目源代码在本机系统或docker环境中自行编译安装
    • 支持CUDA GPU以及ROCm GPU等设备
  • 模型、框架及运算符
    • 支持目前主流深度神经网络模型格式,包括TensorFlow及ONNX
    • 支持多种常用模型,包括AlexNet、VGG11、ResNet50、seq2seq、BERT等
    • 支持超过100种常用的算子
  • 模型的编译与执行
    • 提供丰富的性能优化策略,包括数据流图的优化、模型特定的内核选择、算子协同调度等
    • 支持端到端的模型到源代码的AOT编译,从而有效消除运行时开销
    • 消除对第三方库或框架的依赖
  • 易用性:
    • 提供命令行工具 nnfusion 来支持一键模型编译
    • 提供导出TensorFlow及PyTorch模型的工具
    • 通过支持直接修改生成的代码来提供灵活的模型定制化优化

@jlxue
Copy link
Contributor

jlxue commented Nov 4, 2020

@AlisaChen98 @scarlett2018 i have updated the release notes, pls take a look.

@AlisaChen98
Copy link
Contributor

AlisaChen98 commented Nov 4, 2020

@AlisaChen98 @scarlett2018 i have updated the release notes, pls take a look.

Edit to:

  • Provide ahead-of-time and source-to-source(model-to-code) compilation to reduce runtime overhead
  • Remove third-party library or framework dependencies

@scarlett2018 scarlett2018 unpinned this issue Nov 5, 2020
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants