-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
Copy pathopen_ai_assistant_base.py
1003 lines (840 loc) · 39.9 KB
/
open_ai_assistant_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Microsoft. All rights reserved.
import asyncio
import json
import logging
from collections.abc import AsyncIterable, Iterable
from typing import TYPE_CHECKING, Any, ClassVar, Literal
from openai import AsyncOpenAI
from openai.resources.beta.assistants import Assistant
from openai.resources.beta.threads.messages import Message
from openai.resources.beta.threads.runs.runs import Run
from openai.types.beta.assistant_tool import CodeInterpreterTool, FileSearchTool
from openai.types.beta.threads.runs import RunStep
from pydantic import Field
from semantic_kernel.agents import Agent
from semantic_kernel.agents.channels.agent_channel import AgentChannel
from semantic_kernel.agents.channels.open_ai_assistant_channel import OpenAIAssistantChannel
from semantic_kernel.agents.open_ai.assistant_content_generation import (
create_chat_message,
generate_code_interpreter_content,
generate_function_call_content,
generate_function_result_content,
generate_message_content,
get_function_call_contents,
get_message_contents,
)
from semantic_kernel.agents.open_ai.run_polling_options import RunPollingOptions
from semantic_kernel.connectors.ai.function_calling_utils import kernel_function_metadata_to_function_call_format
from semantic_kernel.contents.chat_history import ChatHistory
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.function_call_content import FunctionCallContent
from semantic_kernel.contents.function_result_content import FunctionResultContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.exceptions.agent_exceptions import (
AgentExecutionException,
AgentFileNotFoundException,
AgentInitializationException,
AgentInvokeException,
)
from semantic_kernel.utils.experimental_decorator import experimental_class
if TYPE_CHECKING:
from semantic_kernel.kernel import Kernel
logger: logging.Logger = logging.getLogger(__name__)
@experimental_class
class OpenAIAssistantBase(Agent):
"""OpenAI Assistant Base class.
Manages the interaction with OpenAI Assistants.
"""
_options_metadata_key: ClassVar[str] = "__run_options"
ai_model_id: str
client: AsyncOpenAI
assistant: Assistant | None = None
polling_options: RunPollingOptions = Field(default_factory=RunPollingOptions)
enable_code_interpreter: bool | None = Field(False)
enable_file_search: bool | None = Field(False)
enable_json_response: bool | None = Field(False)
code_interpreter_file_ids: list[str] | None = Field(default_factory=list, max_length=20)
file_search_file_ids: list[str] | None = Field(default_factory=list, max_length=20)
temperature: float | None = Field(None)
top_p: float | None = Field(None)
vector_store_id: str | None = None
metadata: dict[str, Any] | None = Field(default_factory=dict, max_length=16)
max_completion_tokens: int | None = Field(None)
max_prompt_tokens: int | None = Field(None)
parallel_tool_calls_enabled: bool | None = Field(True)
truncation_message_count: int | None = Field(None)
allowed_message_roles: ClassVar[list[str]] = [AuthorRole.USER, AuthorRole.ASSISTANT]
polling_status: ClassVar[list[str]] = ["queued", "in_progress", "cancelling"]
error_message_states: ClassVar[list[str]] = ["failed", "canceled", "expired"]
channel_type: ClassVar[type[AgentChannel]] = OpenAIAssistantChannel
_is_deleted: bool = False
# region Assistant Initialization
def __init__(
self,
ai_model_id: str,
client: AsyncOpenAI,
service_id: str,
*,
kernel: "Kernel | None" = None,
id: str | None = None,
name: str | None = None,
description: str | None = None,
instructions: str | None = None,
enable_code_interpreter: bool | None = None,
enable_file_search: bool | None = None,
enable_json_response: bool | None = None,
code_interpreter_file_ids: list[str] | None = [],
temperature: float | None = None,
top_p: float | None = None,
vector_store_id: str | None = None,
metadata: dict[str, Any] | None = {},
max_completion_tokens: int | None = None,
max_prompt_tokens: int | None = None,
parallel_tool_calls_enabled: bool | None = True,
truncation_message_count: int | None = None,
**kwargs: Any,
) -> None:
"""Initialize an OpenAIAssistant Base.
Args:
ai_model_id: The AI model id. Defaults to None.
client: The client, either AsyncOpenAI or AsyncAzureOpenAI.
service_id: The service id.
kernel: The kernel. (optional)
id: The id. Defaults to None. (optional)
name: The name. Defaults to None. (optional)
description: The description. Defaults to None. (optional)
default_headers: The default headers. Defaults to None. (optional)
instructions: The instructions. Defaults to None. (optional)
enable_code_interpreter: Enable code interpreter. Defaults to False. (optional)
enable_file_search: Enable file search. Defaults to False. (optional)
enable_json_response: Enable JSON response. Defaults to False. (optional)
code_interpreter_file_ids: The file ids. Defaults to []. (optional)
temperature: The temperature. Defaults to None. (optional)
top_p: The top p. Defaults to None. (optional)
vector_store_id: The vector store id. Defaults to None. (optional)
metadata: The metadata. Defaults to {}. (optional)
max_completion_tokens: The max completion tokens. Defaults to None. (optional)
max_prompt_tokens: The max prompt tokens. Defaults to None. (optional)
parallel_tool_calls_enabled: Enable parallel tool calls. Defaults to True. (optional)
truncation_message_count: The truncation message count. Defaults to None. (optional)
kwargs: The keyword arguments.
"""
args: dict[str, Any] = {}
args = {
"ai_model_id": ai_model_id,
"client": client,
"service_id": service_id,
"instructions": instructions,
"description": description,
"enable_code_interpreter": enable_code_interpreter,
"enable_file_search": enable_file_search,
"enable_json_response": enable_json_response,
"code_interpreter_file_ids": code_interpreter_file_ids,
"temperature": temperature,
"top_p": top_p,
"vector_store_id": vector_store_id,
"metadata": metadata,
"max_completion_tokens": max_completion_tokens,
"max_prompt_tokens": max_prompt_tokens,
"parallel_tool_calls_enabled": parallel_tool_calls_enabled,
"truncation_message_count": truncation_message_count,
}
if name is not None:
args["name"] = name
if id is not None:
args["id"] = id
if kernel is not None:
args["kernel"] = kernel
if kwargs:
args.update(kwargs)
super().__init__(**args)
async def create_assistant(
self,
ai_model_id: str | None = None,
description: str | None = None,
instructions: str | None = None,
name: str | None = None,
enable_code_interpreter: bool | None = None,
code_interpreter_file_ids: list[str] | None = None,
enable_file_search: bool | None = None,
vector_store_id: str | None = None,
metadata: dict[str, str] | None = {},
**kwargs: Any,
) -> "Assistant":
"""Create the assistant.
Args:
ai_model_id: The AI model id. Defaults to None. (optional)
description: The description. Defaults to None. (optional)
instructions: The instructions. Defaults to None. (optional)
name: The name. Defaults to None. (optional)
enable_code_interpreter: Enable code interpreter. Defaults to None. (optional)
enable_file_search: Enable file search. Defaults to None. (optional)
code_interpreter_file_ids: The file ids. Defaults to None. (optional)
vector_store_id: The vector store id. Defaults to None. (optional)
metadata: The metadata. Defaults to {}. (optional)
kwargs: Extra keyword arguments.
Returns:
Assistant: The assistant
"""
create_assistant_kwargs: dict[str, Any] = {}
if ai_model_id is not None:
create_assistant_kwargs["model"] = ai_model_id
elif self.ai_model_id:
create_assistant_kwargs["model"] = self.ai_model_id
if description is not None:
create_assistant_kwargs["description"] = description
elif self.description:
create_assistant_kwargs["description"] = self.description
if instructions is not None:
create_assistant_kwargs["instructions"] = instructions
elif self.instructions:
create_assistant_kwargs["instructions"] = self.instructions
if name is not None:
create_assistant_kwargs["name"] = name
elif self.name:
create_assistant_kwargs["name"] = self.name
tools = []
if enable_code_interpreter is not None:
if enable_code_interpreter:
tools.append({"type": "code_interpreter"})
elif self.enable_code_interpreter:
tools.append({"type": "code_interpreter"})
if enable_file_search is not None:
if enable_file_search:
tools.append({"type": "file_search"})
elif self.enable_file_search:
tools.append({"type": "file_search"})
if tools:
create_assistant_kwargs["tools"] = tools
tool_resources = {}
if code_interpreter_file_ids is not None:
tool_resources["code_interpreter"] = {"file_ids": code_interpreter_file_ids}
elif self.code_interpreter_file_ids:
tool_resources["code_interpreter"] = {"file_ids": self.code_interpreter_file_ids}
if vector_store_id is not None:
tool_resources["file_search"] = {"vector_store_ids": [vector_store_id]}
elif self.vector_store_id:
tool_resources["file_search"] = {"vector_store_ids": [self.vector_store_id]}
if tool_resources:
create_assistant_kwargs["tool_resources"] = tool_resources
if metadata:
create_assistant_kwargs["metadata"] = metadata
elif self.metadata:
create_assistant_kwargs["metadata"] = self.metadata
if kwargs:
create_assistant_kwargs.update(kwargs)
execution_settings = {}
if self.max_completion_tokens:
execution_settings["max_completion_tokens"] = self.max_completion_tokens
if self.max_prompt_tokens:
execution_settings["max_prompt_tokens"] = self.max_prompt_tokens
if self.parallel_tool_calls_enabled:
execution_settings["parallel_tool_calls_enabled"] = self.parallel_tool_calls_enabled
if self.truncation_message_count:
execution_settings["truncation_message_count"] = self.truncation_message_count
if execution_settings:
if "metadata" not in create_assistant_kwargs:
create_assistant_kwargs["metadata"] = {}
if self._options_metadata_key not in create_assistant_kwargs["metadata"]:
create_assistant_kwargs["metadata"][self._options_metadata_key] = {}
create_assistant_kwargs["metadata"][self._options_metadata_key] = json.dumps(execution_settings)
self.assistant = await self.client.beta.assistants.create(
**create_assistant_kwargs,
)
if self._is_deleted:
self._is_deleted = False
return self.assistant
async def modify_assistant(self, assistant_id: str, **kwargs: Any) -> Assistant:
"""Modify the assistant.
Args:
assistant_id: The assistant's current ID.
kwargs: Extra keyword arguments.
Returns:
Assistant: The modified assistant.
"""
if self.assistant is None:
raise AgentInitializationException("The assistant has not been created.")
modified_assistant = await self.client.beta.assistants.update(assistant_id=assistant_id, **kwargs)
self.assistant = modified_assistant
return self.assistant
@classmethod
def _create_open_ai_assistant_definition(cls, assistant: "Assistant") -> dict[str, Any]:
"""Create an OpenAI Assistant Definition from the provided assistant dictionary.
Args:
assistant: The assistant dictionary.
Returns:
An OpenAI Assistant Definition.
"""
execution_settings = {}
if isinstance(assistant.metadata, dict) and OpenAIAssistantBase._options_metadata_key in assistant.metadata:
settings_data = assistant.metadata[OpenAIAssistantBase._options_metadata_key]
if isinstance(settings_data, str):
settings_data = json.loads(settings_data)
assistant.metadata[OpenAIAssistantBase._options_metadata_key] = settings_data
execution_settings = {key: value for key, value in settings_data.items()}
file_ids: list[str] = []
vector_store_id = None
tool_resources = getattr(assistant, "tool_resources", None)
if tool_resources:
if hasattr(tool_resources, "code_interpreter") and tool_resources.code_interpreter:
file_ids = getattr(tool_resources.code_interpreter, "code_interpreter_file_ids", [])
if hasattr(tool_resources, "file_search") and tool_resources.file_search:
vector_store_ids = getattr(tool_resources.file_search, "vector_store_ids", [])
if vector_store_ids:
vector_store_id = vector_store_ids[0]
enable_json_response = (
hasattr(assistant, "response_format")
and assistant.response_format is not None
and getattr(assistant.response_format, "type", "") == "json_object"
)
enable_code_interpreter = any(isinstance(tool, CodeInterpreterTool) for tool in assistant.tools)
enable_file_search = any(isinstance(tool, FileSearchTool) for tool in assistant.tools)
return {
"ai_model_id": assistant.model,
"description": assistant.description,
"id": assistant.id,
"instructions": assistant.instructions,
"name": assistant.name,
"enable_code_interpreter": enable_code_interpreter,
"enable_file_search": enable_file_search,
"enable_json_response": enable_json_response,
"code_interpreter_file_ids": file_ids,
"temperature": assistant.temperature,
"top_p": assistant.top_p,
"vector_store_id": vector_store_id if vector_store_id else None,
"metadata": assistant.metadata,
**execution_settings,
}
# endregion
# region Agent Properties
@property
def tools(self) -> list[dict[str, str]]:
"""The tools.
Returns:
list[dict[str, str]]: The tools.
"""
if self.assistant is None:
raise AgentInitializationException("The assistant has not been created.")
return self._get_tools()
# endregion
# region Agent Channel Methods
def get_channel_keys(self) -> Iterable[str]:
"""Get the channel keys.
Returns:
Iterable[str]: The channel keys.
"""
# Distinguish from other channel types.
yield f"{OpenAIAssistantBase.__name__}"
# Distinguish between different agent IDs
yield self.id
# Distinguish between agent names
yield self.name
# Distinguish between different API base URLs
yield str(self.client.base_url)
async def create_channel(self) -> AgentChannel:
"""Create a channel."""
thread_id = await self.create_thread()
return OpenAIAssistantChannel(client=self.client, thread_id=thread_id)
# endregion
# region Agent Methods
async def create_thread(
self,
*,
code_interpreter_file_ids: list[str] | None = [],
messages: list[ChatMessageContent] | None = [],
vector_store_id: str | None = None,
metadata: dict[str, str] = {},
) -> str:
"""Create a thread.
Args:
code_interpreter_file_ids: The code interpreter file ids. Defaults to an empty list. (optional)
messages: The chat messages. Defaults to an empty list. (optional)
vector_store_id: The vector store id. Defaults to None. (optional)
metadata: The metadata. Defaults to an empty dictionary. (optional)
Returns:
str: The thread id.
"""
create_thread_kwargs: dict[str, Any] = {}
tool_resources = {}
if code_interpreter_file_ids:
tool_resources["code_interpreter"] = {"file_ids": code_interpreter_file_ids}
if vector_store_id:
tool_resources["file_search"] = {"vector_store_ids": [vector_store_id]}
if tool_resources:
create_thread_kwargs["tool_resources"] = tool_resources
if messages:
messages_to_add = []
for message in messages:
if message.role.value not in self.allowed_message_roles:
raise AgentExecutionException(
f"Invalid message role `{message.role.value}`. Allowed roles are {self.allowed_message_roles}."
)
message_contents = get_message_contents(message=message)
for content in message_contents:
messages_to_add.append({"role": message.role.value, "content": content})
create_thread_kwargs["messages"] = messages_to_add
if metadata:
create_thread_kwargs["metadata"] = metadata
thread = await self.client.beta.threads.create(**create_thread_kwargs)
return thread.id
async def delete_thread(self, thread_id: str) -> None:
"""Delete a thread.
Args:
thread_id: The thread id.
"""
await self.client.beta.threads.delete(thread_id)
async def delete(self) -> bool:
"""Delete the assistant.
Returns:
bool: True if the assistant is deleted.
"""
if not self._is_deleted and self.assistant:
await self.client.beta.assistants.delete(self.assistant.id)
self._is_deleted = True
return self._is_deleted
async def add_chat_message(self, thread_id: str, message: ChatMessageContent) -> "Message":
"""Add a chat message.
Args:
thread_id: The thread id.
message: The chat message.
Returns:
Message: The message.
"""
return await create_chat_message(self.client, thread_id, message, self.allowed_message_roles)
async def get_thread_messages(self, thread_id: str) -> AsyncIterable[ChatMessageContent]:
"""Get the messages for the specified thread.
Args:
thread_id: The thread id.
Yields:
ChatMessageContent: The chat message.
"""
agent_names: dict[str, Any] = {}
thread_messages = await self.client.beta.threads.messages.list(thread_id=thread_id, limit=100, order="desc")
for message in thread_messages.data:
assistant_name = None
if message.assistant_id and message.assistant_id not in agent_names:
agent = await self.client.beta.assistants.retrieve(message.assistant_id)
if agent.name:
agent_names[message.assistant_id] = agent.name
assistant_name = agent_names.get(message.assistant_id) if message.assistant_id else message.assistant_id
assistant_name = assistant_name or message.assistant_id
content: ChatMessageContent = generate_message_content(str(assistant_name), message)
if len(content.items) > 0:
yield content
async def add_file(self, file_path: str, purpose: Literal["assistants", "vision"]) -> str:
"""Add a file for use with the Assistant.
Args:
file_path: The file path.
purpose: The purpose. Can be "assistants" or "vision".
Returns:
str: The file id.
Raises:
AgentInitializationError: If the client has not been initialized or the file is not found.
"""
try:
with open(file_path, "rb") as file:
file = await self.client.files.create(file=file, purpose=purpose) # type: ignore
return file.id # type: ignore
except FileNotFoundError as ex:
raise AgentFileNotFoundException(f"File not found: {file_path}") from ex
async def delete_file(self, file_id: str) -> None:
"""Delete a file.
Args:
file_id: The file id.
"""
try:
await self.client.files.delete(file_id)
except Exception as ex:
raise AgentExecutionException("Error deleting file.") from ex
async def create_vector_store(self, file_ids: str | list[str]) -> str:
"""Create a vector store.
Args:
file_ids: The file ids either as a str of a single file ID or a list of strings of file IDs.
Returns:
The vector store id.
Raises:
AgentExecutionError: If there is an error creating the vector store.
"""
if isinstance(file_ids, str):
file_ids = [file_ids]
try:
vector_store = await self.client.beta.vector_stores.create(file_ids=file_ids)
return vector_store.id
except Exception as ex:
raise AgentExecutionException("Error creating vector store.") from ex
async def delete_vector_store(self, vector_store_id: str) -> None:
"""Delete a vector store.
Args:
vector_store_id: The vector store id.
Raises:
AgentExecutionError: If there is an error deleting the vector store.
"""
try:
await self.client.beta.vector_stores.delete(vector_store_id)
except Exception as ex:
raise AgentExecutionException("Error deleting vector store.") from ex
# endregion
# region Agent Invoke Methods
async def invoke(
self,
thread_id: str,
*,
ai_model_id: str | None = None,
enable_code_interpreter: bool | None = False,
enable_file_search: bool | None = False,
enable_json_response: bool | None = None,
max_completion_tokens: int | None = None,
max_prompt_tokens: int | None = None,
parallel_tool_calls_enabled: bool | None = True,
truncation_message_count: int | None = None,
temperature: float | None = None,
top_p: float | None = None,
metadata: dict[str, str] | None = {},
**kwargs: Any,
) -> AsyncIterable[ChatMessageContent]:
"""Invoke the chat assistant.
The supplied arguments will take precedence over the specified assistant level attributes.
Args:
thread_id: The thread id.
ai_model_id: The AI model id. Defaults to None. (optional)
enable_code_interpreter: Enable code interpreter. Defaults to False. (optional)
enable_file_search: Enable file search. Defaults to False. (optional)
enable_json_response: Enable JSON response. Defaults to False. (optional)
max_completion_tokens: The max completion tokens. Defaults to None. (optional)
max_prompt_tokens: The max prompt tokens. Defaults to None. (optional)
parallel_tool_calls_enabled: Enable parallel tool calls. Defaults to True. (optional)
truncation_message_count: The truncation message count. Defaults to None. (optional)
temperature: The temperature. Defaults to None. (optional)
top_p: The top p. Defaults to None. (optional)
metadata: The metadata. Defaults to {}. (optional)
kwargs: Extra keyword arguments.
Yields:
ChatMessageContent: The chat message content.
"""
async for is_visible, content in self._invoke_internal(
thread_id=thread_id,
ai_model_id=ai_model_id,
enable_code_interpreter=enable_code_interpreter,
enable_file_search=enable_file_search,
enable_json_response=enable_json_response,
max_completion_tokens=max_completion_tokens,
max_prompt_tokens=max_prompt_tokens,
parallel_tool_calls_enabled=parallel_tool_calls_enabled,
truncation_message_count=truncation_message_count,
temperature=temperature,
top_p=top_p,
metadata=metadata,
kwargs=kwargs,
):
if is_visible:
yield content
async def _invoke_internal(
self,
thread_id: str,
*,
ai_model_id: str | None = None,
enable_code_interpreter: bool | None = False,
enable_file_search: bool | None = False,
enable_json_response: bool | None = None,
max_completion_tokens: int | None = None,
max_prompt_tokens: int | None = None,
parallel_tool_calls_enabled: bool | None = True,
truncation_message_count: int | None = None,
temperature: float | None = None,
top_p: float | None = None,
metadata: dict[str, str] | None = {},
**kwargs: Any,
) -> AsyncIterable[tuple[bool, ChatMessageContent]]:
"""Internal invoke method.
The supplied arguments will take precedence over the specified assistant level attributes.
Args:
thread_id: The thread id.
ai_model_id: The AI model id. Defaults to None. (optional)
enable_code_interpreter: Enable code interpreter. Defaults to False. (optional)
enable_file_search: Enable file search. Defaults to False. (optional)
enable_json_response: Enable JSON response. Defaults to False. (optional)
max_completion_tokens: The max completion tokens. Defaults to None. (optional)
max_prompt_tokens: The max prompt tokens. Defaults to None. (optional)
parallel_tool_calls_enabled: Enable parallel tool calls. Defaults to True. (optional)
truncation_message_count: The truncation message count. Defaults to None. (optional)
temperature: The temperature. Defaults to None. (optional)
top_p: The top p. Defaults to None. (optional)
metadata: The metadata. Defaults to {}. (optional)
kwargs: Extra keyword arguments.
Yields:
tuple[bool, ChatMessageContent]: A tuple of visibility and chat message content.
"""
if not self.assistant:
raise AgentInitializationException("The assistant has not been created.")
if self._is_deleted:
raise AgentInitializationException("The assistant has been deleted.")
self._check_if_deleted()
tools = self._get_tools()
run_options = self._generate_options(
ai_model_id=ai_model_id,
enable_code_interpreter=enable_code_interpreter,
enable_file_search=enable_file_search,
enable_json_response=enable_json_response,
max_completion_tokens=max_completion_tokens,
max_prompt_tokens=max_prompt_tokens,
parallel_tool_calls_enabled=parallel_tool_calls_enabled,
truncation_message_count=truncation_message_count,
temperature=temperature,
top_p=top_p,
metadata=metadata,
kwargs=kwargs,
)
# Filter out None values to avoid passing them as kwargs
run_options = {k: v for k, v in run_options.items() if v is not None}
run = await self.client.beta.threads.runs.create(
assistant_id=self.assistant.id,
thread_id=thread_id,
instructions=self.assistant.instructions,
tools=tools, # type: ignore
**run_options,
)
processed_step_ids = set()
function_steps: dict[str, FunctionCallContent] = {}
while run.status != "completed":
run = await self._poll_run_status(run=run, thread_id=thread_id)
if run.status in self.error_message_states:
raise AgentInvokeException(
f"Run failed with status: `{run.status}` for agent `{self.name}` and thread `{thread_id}`"
)
# Check if function calling required
if run.status == "requires_action":
fccs = get_function_call_contents(run, function_steps)
if fccs:
yield False, generate_function_call_content(agent_name=self.name, fccs=fccs)
chat_history = ChatHistory()
_ = await self._invoke_function_calls(fccs=fccs, chat_history=chat_history)
tool_outputs = self._format_tool_outputs(chat_history)
await self.client.beta.threads.runs.submit_tool_outputs(
run_id=run.id,
thread_id=thread_id,
tool_outputs=tool_outputs, # type: ignore
)
steps_response = await self.client.beta.threads.runs.steps.list(run_id=run.id, thread_id=thread_id)
steps: list[RunStep] = steps_response.data
completed_steps_to_process: list[RunStep] = sorted(
[s for s in steps if s.completed_at is not None and s.id not in processed_step_ids],
key=lambda s: s.created_at,
)
message_count = 0
for completed_step in completed_steps_to_process:
if completed_step.type == "tool_calls":
assert hasattr(completed_step.step_details, "tool_calls") # nosec
for tool_call in completed_step.step_details.tool_calls:
is_visible = False
content: ChatMessageContent | None = None
if tool_call.type == "code_interpreter":
content = generate_code_interpreter_content(
self.name,
tool_call.code_interpreter.input, # type: ignore
)
is_visible = True
elif tool_call.type == "function":
function_step = function_steps.get(tool_call.id)
assert function_step is not None # nosec
content = generate_function_result_content(
agent_name=self.name, function_step=function_step, tool_call=tool_call
)
if content:
message_count += 1
yield is_visible, content
elif completed_step.type == "message_creation":
message = await self._retrieve_message(
thread_id=thread_id,
message_id=completed_step.step_details.message_creation.message_id, # type: ignore
)
if message:
content = generate_message_content(self.name, message)
if len(content.items) > 0:
message_count += 1
yield True, content
processed_step_ids.add(completed_step.id)
# endregion
# region Agent Helper Methods
def _generate_options(
self,
*,
ai_model_id: str | None = None,
enable_code_interpreter: bool | None = False,
enable_file_search: bool | None = False,
enable_json_response: bool | None = False,
max_completion_tokens: int | None = None,
max_prompt_tokens: int | None = None,
parallel_tool_calls_enabled: bool | None = True,
truncation_message_count: int | None = None,
temperature: float | None = None,
top_p: float | None = None,
metadata: dict[str, str] | None = {},
kwargs: Any = {},
) -> dict[str, Any]:
"""Generate options for the assistant invocation."""
merged_options = self._merge_options(
ai_model_id=ai_model_id,
enable_code_interpreter=enable_code_interpreter,
enable_file_search=enable_file_search,
enable_json_response=enable_json_response,
max_completion_tokens=max_completion_tokens,
max_prompt_tokens=max_prompt_tokens,
parallel_tool_calls_enabled=parallel_tool_calls_enabled,
truncation_message_count=truncation_message_count,
temperature=temperature,
top_p=top_p,
metadata=metadata,
**kwargs,
)
truncation_message_count = merged_options.get("truncation_message_count")
return {
"max_completion_tokens": merged_options.get("max_completion_tokens"),
"max_prompt_tokens": merged_options.get("max_prompt_tokens"),
"model": merged_options.get("ai_model_id"),
"top_p": merged_options.get("top_p"),
# TODO(evmattso): Support `parallel_tool_calls` when it is ready
"response_format": "json" if merged_options.get("enable_json_response") else None,
"temperature": merged_options.get("temperature"),
"truncation_strategy": truncation_message_count if truncation_message_count else None,
"metadata": merged_options.get("metadata", None),
}
def _merge_options(
self,
ai_model_id: str | None = None,
enable_code_interpreter: bool | None = None,
enable_file_search: bool | None = None,
enable_json_response: bool | None = None,
max_completion_tokens: int | None = None,
max_prompt_tokens: int | None = None,
parallel_tool_calls_enabled: bool | None = True,
truncation_message_count: int | None = None,
temperature: float | None = None,
top_p: float | None = None,
metadata: dict[str, str] | None = {},
**kwargs: Any,
) -> dict[str, Any]:
"""Merge the run-time options with the agent level attribute options."""
merged_options = {
"ai_model_id": ai_model_id if ai_model_id is not None else self.ai_model_id,
"enable_code_interpreter": enable_code_interpreter
if enable_code_interpreter is not None
else self.enable_code_interpreter,
"enable_file_search": enable_file_search if enable_file_search is not None else self.enable_file_search,
"enable_json_response": enable_json_response
if enable_json_response is not None
else self.enable_json_response,
"max_completion_tokens": max_completion_tokens
if max_completion_tokens is not None
else self.max_completion_tokens,
"max_prompt_tokens": max_prompt_tokens if max_prompt_tokens is not None else self.max_prompt_tokens,
"parallel_tool_calls_enabled": parallel_tool_calls_enabled
if parallel_tool_calls_enabled is not None
else self.parallel_tool_calls_enabled,
"truncation_message_count": truncation_message_count
if truncation_message_count is not None
else self.truncation_message_count,
"temperature": temperature if temperature is not None else self.temperature,
"top_p": top_p if top_p is not None else self.top_p,
"metadata": metadata if metadata is not None else self.metadata,
}
# Update merged_options with any additional kwargs
merged_options.update(kwargs)
return merged_options
async def _poll_run_status(self, run: Run, thread_id: str) -> Run:
"""Poll the run status.
Args:
run: The run.
thread_id: The thread id.
Returns:
The run.
"""
logger.info(f"Polling run status: {run.id}, threadId: {thread_id}")
count = 0
while True:
# Reduce polling frequency after a couple attempts
await asyncio.sleep(self.polling_options.get_polling_interval(count).total_seconds())
count += 1
try:
run = await self.client.beta.threads.runs.retrieve(run.id, thread_id=thread_id)
except Exception as e:
logging.warning(f"Failed to retrieve run for run id: `{run.id}` and thread id: `{thread_id}`: {e}")
# Retry anyway
if run.status not in self.polling_status:
break
logger.info(f"Polled run status: {run.status}, {run.id}, threadId: {thread_id}")
return run
async def _retrieve_message(self, thread_id: str, message_id: str) -> Message | None:
"""Retrieve a message from a thread.
Args:
thread_id: The thread id.
message_id: The message id.
Returns:
The message or None.
"""
message: Message | None = None
count = 0
max_retries = 3
while count < max_retries:
try:
message = await self.client.beta.threads.messages.retrieve(message_id, thread_id=thread_id)
break
except Exception as ex:
logger.error(f"Failed to retrieve message {message_id} from thread {thread_id}: {ex}")
count += 1
if count >= max_retries:
logger.error(
f"Max retries reached. Unable to retrieve message {message_id} from thread {thread_id}."
)
break
backoff_time: float = self.polling_options.message_synchronization_delay.total_seconds() * (2**count)
await asyncio.sleep(backoff_time)
return message
def _check_if_deleted(self) -> None:
"""Check if the assistant has been deleted."""
if self._is_deleted:
raise AgentInitializationException("The assistant has been deleted.")
def _get_tools(self) -> list[dict[str, str]]:
"""Get the list of tools for the assistant.
Returns:
The list of tools.
"""
tools = []
if self.assistant is None:
raise AgentInitializationException("The assistant has not been created.")
for tool in self.assistant.tools:
if isinstance(tool, CodeInterpreterTool):
tools.append({"type": "code_interpreter"})
elif isinstance(tool, FileSearchTool):
tools.append({"type": "file_search"})
funcs = self.kernel.get_full_list_of_function_metadata()
tools.extend([kernel_function_metadata_to_function_call_format(f) for f in funcs])
return tools
async def _invoke_function_calls(self, fccs: list[FunctionCallContent], chat_history: ChatHistory) -> list[Any]:
"""Invoke function calls and store results in chat history.
Args:
fccs: The function call contents.
chat_history: The chat history.
Returns:
The results as a list.
"""
tasks = [
self.kernel.invoke_function_call(function_call=function_call, chat_history=chat_history)
for function_call in fccs
]
return await asyncio.gather(*tasks)
def _format_tool_outputs(self, chat_history: ChatHistory) -> list[dict[str, str]]:
"""Format tool outputs from chat history for submission.
Args:
chat_history: The chat history.
Returns:
The formatted tool outputs as a list of dictionaries.
"""
tool_outputs = []
for tool_call in chat_history.messages[0].items:
if isinstance(tool_call, FunctionResultContent):
tool_outputs.append({
"tool_call_id": tool_call.id,
"output": tool_call.result,
})