forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSwiftObject.mm
1565 lines (1344 loc) · 50.4 KB
/
SwiftObject.mm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- SwiftObject.mm - Native Swift Object root class ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This implements the Objective-C root class that provides basic `id`-
// compatibility and `NSObject` protocol conformance for pure Swift classes.
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/Config.h"
#if SWIFT_OBJC_INTEROP
#include <objc/NSObject.h>
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
#endif
#include "llvm/ADT/StringRef.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/Heap.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/ObjCBridge.h"
#include "swift/Strings.h"
#include "../SwiftShims/RuntimeShims.h"
#include "../SwiftShims/AssertionReporting.h"
#include "CompatibilityOverride.h"
#include "ErrorObject.h"
#include "Private.h"
#include "SwiftObject.h"
#include "WeakReference.h"
#include "swift/Runtime/Debug.h"
#if SWIFT_OBJC_INTEROP
#include <dlfcn.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unordered_map>
#if SWIFT_OBJC_INTEROP
# import <CoreFoundation/CFBase.h> // for CFTypeID
# import <Foundation/Foundation.h>
# include <malloc/malloc.h>
# include <dispatch/dispatch.h>
#endif
using namespace swift;
#if SWIFT_HAS_ISA_MASKING
OBJC_EXPORT __attribute__((__weak_import__))
const uintptr_t objc_debug_isa_class_mask;
uintptr_t swift::swift_isaMask = SWIFT_ISA_MASK;
#endif
const ClassMetadata *swift::_swift_getClass(const void *object) {
#if SWIFT_OBJC_INTEROP
if (!isObjCTaggedPointer(object))
return _swift_getClassOfAllocated(object);
return reinterpret_cast<const ClassMetadata*>(
object_getClass(id_const_cast(object)));
#else
return _swift_getClassOfAllocated(object);
#endif
}
#if SWIFT_OBJC_INTEROP
/// Replacement for ObjC object_isClass(), which is unavailable on
/// deployment targets macOS 10.9 and iOS 7.
static bool objcObjectIsClass(id object) {
// same as object_isClass(object)
return class_isMetaClass(object_getClass(object));
}
/// Same as _swift_getClassOfAllocated() but returns type Class.
static Class _swift_getObjCClassOfAllocated(const void *object) {
return class_const_cast(_swift_getClassOfAllocated(object));
}
/// Fetch the ObjC class object associated with the formal dynamic
/// type of the given (possibly Objective-C) object. The formal
/// dynamic type ignores dynamic subclasses such as those introduced
/// by KVO.
///
/// The object pointer may be a tagged pointer, but cannot be null.
const ClassMetadata *swift::swift_getObjCClassFromObject(HeapObject *object) {
auto classAsMetadata = _swift_getClass(object);
// Walk up the superclass chain skipping over artifical Swift classes.
// If we find a non-Swift class use the result of [object class] instead.
while (classAsMetadata && classAsMetadata->isTypeMetadata()) {
if (!classAsMetadata->isArtificialSubclass())
return classAsMetadata;
classAsMetadata = classAsMetadata->Superclass;
}
id objcObject = reinterpret_cast<id>(object);
Class objcClass = [objcObject class];
if (objcObjectIsClass(objcObject)) {
// Original object is a class. We want a
// metaclass but +class doesn't give that to us.
objcClass = object_getClass(objcClass);
}
classAsMetadata = reinterpret_cast<const ClassMetadata *>(objcClass);
return classAsMetadata;
}
#endif
/// Fetch the type metadata associated with the formal dynamic
/// type of the given (possibly Objective-C) object. The formal
/// dynamic type ignores dynamic subclasses such as those introduced
/// by KVO.
///
/// The object pointer may be a tagged pointer, but cannot be null.
const Metadata *swift::swift_getObjectType(HeapObject *object) {
auto classAsMetadata = _swift_getClass(object);
#if SWIFT_OBJC_INTEROP
// Walk up the superclass chain skipping over artifical Swift classes.
// If we find a non-Swift class use the result of [object class] instead.
while (classAsMetadata && classAsMetadata->isTypeMetadata()) {
if (!classAsMetadata->isArtificialSubclass())
return classAsMetadata;
classAsMetadata = classAsMetadata->Superclass;
}
id objcObject = reinterpret_cast<id>(object);
Class objcClass = [objcObject class];
if (objcObjectIsClass(objcObject)) {
// Original object is a class. We want a
// metaclass but +class doesn't give that to us.
objcClass = object_getClass(objcClass);
}
classAsMetadata = reinterpret_cast<const ClassMetadata *>(objcClass);
return swift_getObjCClassMetadata(classAsMetadata);
#else
assert(classAsMetadata &&
classAsMetadata->isTypeMetadata() &&
!classAsMetadata->isArtificialSubclass());
return classAsMetadata;
#endif
}
#if SWIFT_OBJC_INTEROP
static SwiftObject *_allocHelper(Class cls) {
// XXX FIXME
// When we have layout information, do precise alignment rounding
// For now, assume someone is using hardware vector types
#if defined(__x86_64__) || defined(__i386__)
const size_t mask = 32 - 1;
#else
const size_t mask = 16 - 1;
#endif
return reinterpret_cast<SwiftObject *>(swift::swift_allocObject(
reinterpret_cast<HeapMetadata const *>(cls),
class_getInstanceSize(cls), mask));
}
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_API
Class _swift_classOfObjCHeapObject(OpaqueValue *value) {
return _swift_getObjCClassOfAllocated(value);
}
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_API
id swift_stdlib_getDescription(OpaqueValue *value,
const Metadata *type);
id swift::getDescription(OpaqueValue *value, const Metadata *type) {
id result = swift_stdlib_getDescription(value, type);
type->vw_destroy(value);
return [result autorelease];
}
static id _getObjectDescription(SwiftObject *obj) {
swift_retain((HeapObject*)obj);
return getDescription((OpaqueValue*)&obj,
_swift_getClassOfAllocated(obj));
}
static id _getClassDescription(Class cls) {
const char *name = class_getName(cls);
int len = strlen(name);
return [swift_stdlib_NSStringFromUTF8(name, len) autorelease];
}
@implementation SwiftObject
+ (void)initialize {
#if SWIFT_HAS_ISA_MASKING && !NDEBUG
// Older OSes may not have this variable, or it may not match. This code only
// runs on older OSes in certain testing scenarios, so that doesn't matter.
// Only perform the check on newer OSes where the value should definitely
// match.
# if SWIFT_BUILD_HAS_BACK_DEPLOYMENT
if (!_swift_isBackDeploying())
# endif
{
assert(&objc_debug_isa_class_mask);
assert(objc_debug_isa_class_mask == SWIFT_ISA_MASK);
}
#endif
}
+ (instancetype)allocWithZone:(struct _NSZone *)zone {
assert(zone == nullptr);
return _allocHelper(self);
}
+ (instancetype)alloc {
// we do not support "placement new" or zones,
// so there is no need to call allocWithZone
return _allocHelper(self);
}
+ (Class)class {
return self;
}
- (Class)class {
return _swift_getObjCClassOfAllocated(self);
}
+ (Class)superclass {
return (Class)((const ClassMetadata*) self)->Superclass;
}
- (Class)superclass {
return (Class)_swift_getClassOfAllocated(self)->Superclass;
}
+ (BOOL)isMemberOfClass:(Class)cls {
return cls == _swift_getObjCClassOfAllocated(self);
}
- (BOOL)isMemberOfClass:(Class)cls {
return cls == _swift_getObjCClassOfAllocated(self);
}
- (instancetype)self {
return self;
}
- (BOOL)isProxy {
return NO;
}
- (struct _NSZone *)zone {
auto zone = malloc_zone_from_ptr(self);
return (struct _NSZone *)(zone ? zone : malloc_default_zone());
}
- (void)doesNotRecognizeSelector: (SEL) sel {
Class cls = _swift_getObjCClassOfAllocated(self);
fatalError(/* flags = */ 0,
"Unrecognized selector %c[%s %s]\n",
class_isMetaClass(cls) ? '+' : '-',
class_getName(cls), sel_getName(sel));
}
STANDARD_OBJC_METHOD_IMPLS_FOR_SWIFT_OBJECTS
// Retaining the class object itself is a no-op.
+ (id)retain {
return self;
}
+ (void)release {
/* empty */
}
+ (id)autorelease {
return self;
}
+ (NSUInteger)retainCount {
return ULONG_MAX;
}
+ (BOOL)_isDeallocating {
return NO;
}
+ (BOOL)_tryRetain {
return YES;
}
+ (BOOL)allowsWeakReference {
return YES;
}
+ (BOOL)retainWeakReference {
return YES;
}
- (BOOL)isKindOfClass:(Class)someClass {
for (auto cls = _swift_getClassOfAllocated(self); cls != nullptr;
cls = cls->Superclass)
if (cls == (const ClassMetadata*) someClass)
return YES;
return NO;
}
+ (BOOL)isSubclassOfClass:(Class)someClass {
for (auto cls = (const ClassMetadata*) self; cls != nullptr;
cls = cls->Superclass)
if (cls == (const ClassMetadata*) someClass)
return YES;
return NO;
}
+ (BOOL)respondsToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(_swift_getObjCClassOfAllocated(self), sel);
}
- (BOOL)respondsToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(_swift_getObjCClassOfAllocated(self), sel);
}
+ (BOOL)instancesRespondToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(self, sel);
}
+ (IMP)methodForSelector:(SEL)sel {
return class_getMethodImplementation(object_getClass((id)self), sel);
}
- (IMP)methodForSelector:(SEL)sel {
return class_getMethodImplementation(object_getClass(self), sel);
}
+ (IMP)instanceMethodForSelector:(SEL)sel {
return class_getMethodImplementation(self, sel);
}
- (BOOL)conformsToProtocol:(Protocol*)proto {
if (!proto) return NO;
auto selfClass = _swift_getObjCClassOfAllocated(self);
// Walk the superclass chain.
while (selfClass) {
if (class_conformsToProtocol(selfClass, proto))
return YES;
selfClass = class_getSuperclass(selfClass);
}
return NO;
}
+ (BOOL)conformsToProtocol:(Protocol*)proto {
if (!proto) return NO;
// Walk the superclass chain.
Class selfClass = self;
while (selfClass) {
if (class_conformsToProtocol(selfClass, proto))
return YES;
selfClass = class_getSuperclass(selfClass);
}
return NO;
}
- (NSUInteger)hash {
return (NSUInteger)self;
}
- (BOOL)isEqual:(id)object {
return self == object;
}
- (id)performSelector:(SEL)aSelector {
return ((id(*)(id, SEL))objc_msgSend)(self, aSelector);
}
- (id)performSelector:(SEL)aSelector withObject:(id)object {
return ((id(*)(id, SEL, id))objc_msgSend)(self, aSelector, object);
}
- (id)performSelector:(SEL)aSelector withObject:(id)object1
withObject:(id)object2 {
return ((id(*)(id, SEL, id, id))objc_msgSend)(self, aSelector, object1,
object2);
}
- (id /* NSString */)description {
return _getObjectDescription(self);
}
- (id /* NSString */)debugDescription {
return _getObjectDescription(self);
}
+ (id /* NSString */)description {
return _getClassDescription(self);
}
+ (id /* NSString */)debugDescription {
return _getClassDescription(self);
}
- (id /* NSString */)_copyDescription {
// The NSObject version of this pushes an autoreleasepool in case -description
// autoreleases, but we're OK with leaking things if we're at the top level
// of the main thread with no autorelease pool.
return [[self description] retain];
}
- (CFTypeID)_cfTypeID {
return (CFTypeID)1; //NSObject's CFTypeID is constant
}
// Foundation collections expect these to be implemented.
- (BOOL)isNSArray__ { return NO; }
- (BOOL)isNSCFConstantString__ { return NO; }
- (BOOL)isNSData__ { return NO; }
- (BOOL)isNSDate__ { return NO; }
- (BOOL)isNSDictionary__ { return NO; }
- (BOOL)isNSObject__ { return NO; }
- (BOOL)isNSOrderedSet__ { return NO; }
- (BOOL)isNSNumber__ { return NO; }
- (BOOL)isNSSet__ { return NO; }
- (BOOL)isNSString__ { return NO; }
- (BOOL)isNSTimeZone__ { return NO; }
- (BOOL)isNSValue__ { return NO; }
@end
#endif
/// Decide dynamically whether the given class uses native Swift
/// reference-counting.
bool swift::usesNativeSwiftReferenceCounting(const ClassMetadata *theClass) {
#if SWIFT_OBJC_INTEROP
if (!theClass->isTypeMetadata()) return false;
return (theClass->getFlags() & ClassFlags::UsesSwiftRefcounting);
#else
return true;
#endif
}
/// Decide dynamically whether the given type metadata uses native Swift
/// reference-counting. The metadata is known to correspond to a class
/// type, but note that does not imply being known to be a ClassMetadata
/// due to the existence of ObjCClassWrapper.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
bool
_swift_objcClassUsesNativeSwiftReferenceCounting(const Metadata *theClass) {
#if SWIFT_OBJC_INTEROP
// If this is ObjC wrapper metadata, the class is definitely not using
// Swift ref-counting.
if (isa<ObjCClassWrapperMetadata>(theClass)) return false;
// Otherwise, it's class metadata.
return usesNativeSwiftReferenceCounting(cast<ClassMetadata>(theClass));
#else
return true;
#endif
}
// The non-pointer bits, excluding the tag bits.
static auto const unTaggedNonNativeBridgeObjectBits
= heap_object_abi::SwiftSpareBitsMask
& ~heap_object_abi::ObjCReservedBitsMask
& ~heap_object_abi::BridgeObjectTagBitsMask;
#if SWIFT_OBJC_INTEROP
#if defined(__x86_64__)
static uintptr_t const objectPointerIsObjCBit = 0x4000000000000000ULL;
#elif defined(__arm64__) || defined(__arch64__) || defined(_M_ARM64)
static uintptr_t const objectPointerIsObjCBit = 0x4000000000000000ULL;
#else
static uintptr_t const objectPointerIsObjCBit = 0x00000002U;
#endif
void *swift::swift_unknownObjectRetain_n(void *object, int n) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_retain_n(static_cast<HeapObject *>(object), n);
}
for (int i = 0; i < n; ++i)
objc_retain(static_cast<id>(object));
return object;
}
void swift::swift_unknownObjectRelease_n(void *object, int n) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_release_n(static_cast<HeapObject *>(object), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(object));
}
void *swift::swift_unknownObjectRetain(void *object) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_retain(static_cast<HeapObject *>(object));
}
return objc_retain(static_cast<id>(object));
}
void swift::swift_unknownObjectRelease(void *object) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_release(static_cast<HeapObject *>(object));
return objc_release(static_cast<id>(object));
}
void *swift::swift_nonatomic_unknownObjectRetain_n(void *object, int n) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_nonatomic_retain_n(static_cast<HeapObject *>(object), n);
}
for (int i = 0; i < n; ++i)
objc_retain(static_cast<id>(object));
return object;
}
void swift::swift_nonatomic_unknownObjectRelease_n(void *object, int n) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_nonatomic_release_n(static_cast<HeapObject *>(object), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(object));
}
void *swift::swift_nonatomic_unknownObjectRetain(void *object) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_nonatomic_retain(static_cast<HeapObject *>(object));
}
return objc_retain(static_cast<id>(object));
}
void swift::swift_nonatomic_unknownObjectRelease(void *object) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_release(static_cast<HeapObject *>(object));
return objc_release(static_cast<id>(object));
}
/// Return true iff the given BridgeObject is not known to use native
/// reference-counting.
///
/// Precondition: object does not encode a tagged pointer
static bool isNonNative_unTagged_bridgeObject(void *object) {
static_assert((heap_object_abi::SwiftSpareBitsMask & objectPointerIsObjCBit) ==
objectPointerIsObjCBit,
"isObjC bit not within spare bits");
return (uintptr_t(object) & objectPointerIsObjCBit) != 0
&& (uintptr_t(object) & heap_object_abi::BridgeObjectTagBitsMask) == 0;
}
/// Return true iff the given BridgeObject is a tagged value.
static bool isBridgeObjectTaggedPointer(void *object) {
return (uintptr_t(object) & heap_object_abi::BridgeObjectTagBitsMask) != 0;
}
#endif
// Mask out the spare bits in a bridgeObject, returning the object it
// encodes.
///
/// Precondition: object does not encode a tagged pointer
static void* toPlainObject_unTagged_bridgeObject(void *object) {
return (void*)(uintptr_t(object) & ~unTaggedNonNativeBridgeObjectBits);
}
void *swift::swift_bridgeObjectRetain(void *object) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_retain(static_cast<HeapObject *>(objectRef));
return object;
}
objc_retain(static_cast<id>(objectRef));
return object;
#else
swift_retain(static_cast<HeapObject *>(objectRef));
return object;
#endif
}
SWIFT_RUNTIME_EXPORT
void *swift::swift_nonatomic_bridgeObjectRetain(void *object) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_nonatomic_retain(static_cast<HeapObject *>(objectRef));
return object;
}
objc_retain(static_cast<id>(objectRef));
return object;
#else
swift_nonatomic_retain(static_cast<HeapObject *>(objectRef));
return object;
#endif
}
SWIFT_RUNTIME_EXPORT
void swift::swift_bridgeObjectRelease(void *object) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_release(static_cast<HeapObject *>(objectRef));
return objc_release(static_cast<id>(objectRef));
#else
swift_release(static_cast<HeapObject *>(objectRef));
#endif
}
void swift::swift_nonatomic_bridgeObjectRelease(void *object) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_nonatomic_release(static_cast<HeapObject *>(objectRef));
return objc_release(static_cast<id>(objectRef));
#else
swift_nonatomic_release(static_cast<HeapObject *>(objectRef));
#endif
}
void *swift::swift_bridgeObjectRetain_n(void *object, int n) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
void *objc_ret = nullptr;
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_retain_n(static_cast<HeapObject *>(objectRef), n);
return object;
}
for (int i = 0;i < n; ++i)
objc_ret = objc_retain(static_cast<id>(objectRef));
return object;
#else
swift_retain_n(static_cast<HeapObject *>(objectRef), n);
return object;
#endif
}
void swift::swift_bridgeObjectRelease_n(void *object, int n) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_release_n(static_cast<HeapObject *>(objectRef), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(objectRef));
#else
swift_release_n(static_cast<HeapObject *>(objectRef), n);
#endif
}
void *swift::swift_nonatomic_bridgeObjectRetain_n(void *object, int n) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
void *objc_ret = nullptr;
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_nonatomic_retain_n(static_cast<HeapObject *>(objectRef), n);
return object;
}
for (int i = 0;i < n; ++i)
objc_ret = objc_retain(static_cast<id>(objectRef));
return object;
#else
swift_nonatomic_retain_n(static_cast<HeapObject *>(objectRef), n);
return object;
#endif
}
void swift::swift_nonatomic_bridgeObjectRelease_n(void *object, int n) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_nonatomic_release_n(static_cast<HeapObject *>(objectRef), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(objectRef));
#else
swift_nonatomic_release_n(static_cast<HeapObject *>(objectRef), n);
#endif
}
#if SWIFT_OBJC_INTEROP
/*****************************************************************************/
/************************ UNKNOWN UNOWNED REFERENCES *************************/
/*****************************************************************************/
// Swift's native unowned references are implemented purely with
// reference-counting: as long as an unowned reference is held to an object,
// it can be destroyed but never deallocated, being that it remains fully safe
// to pass around a pointer and perform further reference-counting operations.
//
// For imported class types (meaning ObjC, for now, but in principle any
// type which supports ObjC-style weak references but not directly Swift-style
// unowned references), we have to implement this on top of the weak-reference
// support, at least for now. But we'd like to be able to statically take
// advantage of Swift's representational advantages when we know that all the
// objects involved are Swift-native. That means that whatever scheme we use
// for unowned references needs to interoperate with code just doing naive
// loads and stores, at least when the ObjC case isn't triggered.
//
// We have to be sensitive about making unreasonable assumptions about the
// implementation of ObjC weak references, and we definitely cannot modify
// memory owned by the ObjC runtime. In the long run, direct support from
// the ObjC runtime can allow an efficient implementation that doesn't violate
// those requirements, both by allowing us to directly check whether a weak
// reference was cleared by deallocation vs. just initialized to nil and by
// guaranteeing a bit pattern that distinguishes Swift references. In the
// meantime, out-of-band allocation is inefficient but not ridiculously so.
//
// Note that unowned references need not provide guaranteed behavior in
// the presence of read/write or write/write races on the reference itself.
// Furthermore, and unlike weak references, they also do not need to be
// safe against races with the deallocation of the object. It is the user's
// responsibility to ensure that the reference remains valid at the time
// that the unowned reference is read.
namespace {
/// An Objective-C unowned reference. Given an unknown unowned reference
/// in memory, it is an ObjC unowned reference if the IsObjCFlag bit
/// is set; if so, the pointer stored in the reference actually points
/// to out-of-line storage containing an ObjC weak reference.
///
/// It is an invariant that this out-of-line storage is only ever
/// allocated and constructed for non-null object references, so if the
/// weak load yields null, it can only be because the object was deallocated.
struct ObjCUnownedReference : UnownedReference {
// Pretending that there's a subclass relationship here means that
// accesses to objects formally constructed as UnownedReferences will
// technically be aliasing violations. However, the language runtime
// will generally not see any such objects.
enum : uintptr_t { IsObjCMask = 0x1, IsObjCFlag = 0x1 };
/// The out-of-line storage of an ObjC unowned reference.
struct Storage {
/// A weak reference registered with the ObjC runtime.
mutable id WeakRef;
Storage(id ref) {
assert(ref && "creating storage for null reference?");
objc_initWeak(&WeakRef, ref);
}
Storage(const Storage &other) {
objc_copyWeak(&WeakRef, &other.WeakRef);
}
Storage &operator=(const Storage &other) = delete;
Storage &operator=(id ref) {
objc_storeWeak(&WeakRef, ref);
return *this;
}
~Storage() {
objc_destroyWeak(&WeakRef);
}
// Don't use the C++ allocator.
void *operator new(size_t size) { return malloc(size); }
void operator delete(void *ptr) { free(ptr); }
};
Storage *storage() {
assert(isa<ObjCUnownedReference>(this));
return reinterpret_cast<Storage*>(
reinterpret_cast<uintptr_t>(Value) & ~IsObjCMask);
}
static void initialize(UnownedReference *dest, id value) {
initializeWithStorage(dest, new Storage(value));
}
static void initializeWithCopy(UnownedReference *dest, Storage *src) {
initializeWithStorage(dest, new Storage(*src));
}
static void initializeWithStorage(UnownedReference *dest,
Storage *storage) {
dest->Value = (HeapObject*) (uintptr_t(storage) | IsObjCFlag);
}
static bool classof(const UnownedReference *ref) {
return (uintptr_t(ref->Value) & IsObjCMask) == IsObjCFlag;
}
};
}
static bool isObjCForUnownedReference(void *value) {
return (isObjCTaggedPointer(value) ||
!objectUsesNativeSwiftReferenceCounting(value));
}
UnownedReference *swift::swift_unknownObjectUnownedInit(UnownedReference *dest,
void *value) {
// Note that LLDB also needs to know about the memory layout of unowned
// references. The implementation here needs to be kept in sync with
// lldb_private::SwiftLanguagueRuntime.
if (!value) {
dest->Value = nullptr;
} else if (isObjCForUnownedReference(value)) {
ObjCUnownedReference::initialize(dest, (id) value);
} else {
swift_unownedInit(dest, (HeapObject*) value);
}
return dest;
}
UnownedReference *
swift::swift_unknownObjectUnownedAssign(UnownedReference *dest, void *value) {
if (!value) {
swift_unknownObjectUnownedDestroy(dest);
dest->Value = nullptr;
} else if (isObjCForUnownedReference(value)) {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
objc_storeWeak(&objcDest->storage()->WeakRef, (id) value);
} else {
swift_unownedDestroy(dest);
ObjCUnownedReference::initialize(dest, (id) value);
}
} else {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
delete objcDest->storage();
swift_unownedInit(dest, (HeapObject*) value);
} else {
swift_unownedAssign(dest, (HeapObject*) value);
}
}
return dest;
}
void *swift::swift_unknownObjectUnownedLoadStrong(UnownedReference *ref) {
if (!ref->Value) {
return nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
auto result = (void*) objc_loadWeakRetained(&objcRef->storage()->WeakRef);
if (result == nullptr) {
swift::swift_abortRetainUnowned(nullptr);
}
return result;
} else {
return swift_unownedLoadStrong(ref);
}
}
void *swift::swift_unknownObjectUnownedTakeStrong(UnownedReference *ref) {
if (!ref->Value) {
return nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
auto storage = objcRef->storage();
auto result = (void*) objc_loadWeakRetained(&objcRef->storage()->WeakRef);
if (result == nullptr) {
swift::swift_abortRetainUnowned(nullptr);
}
delete storage;
return result;
} else {
return swift_unownedTakeStrong(ref);
}
}
void swift::swift_unknownObjectUnownedDestroy(UnownedReference *ref) {
if (!ref->Value) {
// Nothing to do.
return;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
delete objcRef->storage();
} else {
swift_unownedDestroy(ref);
}
}
UnownedReference *
swift::swift_unknownObjectUnownedCopyInit(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
if (!src->Value) {
dest->Value = nullptr;
} else if (auto objcSrc = dyn_cast<ObjCUnownedReference>(src)) {
ObjCUnownedReference::initializeWithCopy(dest, objcSrc->storage());
} else {
swift_unownedCopyInit(dest, src);
}
return dest;
}
UnownedReference *
swift::swift_unknownObjectUnownedTakeInit(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
dest->Value = src->Value;
return dest;
}
UnownedReference *
swift::swift_unknownObjectUnownedCopyAssign(UnownedReference *dest,
UnownedReference *src) {
if (dest == src) return dest;
if (auto objcSrc = dyn_cast<ObjCUnownedReference>(src)) {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
// ObjC unfortunately doesn't expose a copy-assign operation.
objc_destroyWeak(&objcDest->storage()->WeakRef);
objc_copyWeak(&objcDest->storage()->WeakRef,
&objcSrc->storage()->WeakRef);
return dest;
}
swift_unownedDestroy(dest);
ObjCUnownedReference::initializeWithCopy(dest, objcSrc->storage());
} else {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
delete objcDest->storage();
swift_unownedCopyInit(dest, src);
} else {
swift_unownedCopyAssign(dest, src);
}
}
return dest;
}
UnownedReference *
swift::swift_unknownObjectUnownedTakeAssign(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
// There's not really anything more efficient to do here than this.
swift_unknownObjectUnownedDestroy(dest);
dest->Value = src->Value;
return dest;
}
bool swift::swift_unknownObjectUnownedIsEqual(UnownedReference *ref,
void *value) {
if (!ref->Value) {
return value == nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
id refValue = objc_loadWeakRetained(&objcRef->storage()->WeakRef);
bool isEqual = (void*)refValue == value;
// This ObjC case has no deliberate unowned check here,
// unlike the Swift case.
[refValue release];
return isEqual;
} else {
return swift_unownedIsEqual(ref, (HeapObject *)value);