-
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy path06-nonlinear-regession.Rmd
1194 lines (895 loc) · 33.5 KB
/
06-nonlinear-regession.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Non-linear Regression
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(kableExtra)
library(knitr)
library(nlstools)
library(investr)
library(MASS)
```
**Definition**: models in which the derivatives of the mean function with respect to the parameters depend on one or more of the parameters.
To approximate data, we can approximate the function
- by a high-order polynomial
- by a linear model (e.g., a Taylor expansion around $X$'s)
- a collection of locally linear models or basis function
but it would not easy to interpret, or not enough data, or can't interpret them globally.
**intrinsically nonlinear** models:
$$
Y_i = f(\mathbf{x_i;\theta}) + \epsilon_i
$$
where $f(\mathbf{x_i;\theta})$ is a nonlinear function relating $E(Y_i)$ to the independent variables $x_i$
- $\mathbf{x}_i$ is a $k \times 1$ vector of independent variables (fixed).
- $\mathbf{\theta}$ is a $p \times 1$ vector of parameters.
- $\epsilon_i$s are iid variables mean 0 and variance $\sigma^2$. (sometimes it's normal).
## Inference
Since $Y_i = f(\mathbf{x}_i,\theta) + \epsilon_i$, where $\epsilon_i \sim iid(0,\sigma^2)$, we can obtain $\hat{\theta}$ by minimizing $\sum_{i=1}^{n}(Y_i - f(x_i,\theta))^2$ and estimate $s^2 = \hat{\sigma}^2_{\epsilon}=\frac{\sum_{i=1}^{n}(Y_i - f(x_i,\theta))^2}{n-p}$
### Linear Function of the Parameters
If we assume $\epsilon_i \sim N(0,\sigma^2)$, then
$$
\hat{\theta} \sim AN(\mathbf{\theta},\sigma^2[\mathbf{F}(\theta)'\mathbf{F}(\theta)]^{-1})
$$
where AN = asymptotic normality
Asymptotic means we have enough data to make inference (As your sample size increases, this becomes more and more accurate (to the true value)).
Since we want to do inference on linear combinations of parameters or contrasts.
If we have $\mathbf{\theta} = (\theta_0,\theta_1,\theta_2)'$ and we want to look at $\theta_1 - \theta_2$; we can define vector $\mathbf{a} = (0,1,-1)'$, consider inference for $\mathbf{a'\theta}$
Rules for expectation and variance of a fixed vector $\mathbf{a}$ and random vector $\mathbf{Z}$;
$$
\begin{aligned}
E(\mathbf{a'Z}) &= \mathbf{a'}E(\mathbf{Z}) \\
var(\mathbf{a'Z}) &= \mathbf{a'}var(\mathbf{Z}) \mathbf{a}
\end{aligned}
$$
Then,
$$
\mathbf{a'\hat{\theta}} \sim AN(\mathbf{a'\theta},\sigma^2\mathbf{a'[F(\theta)'F(\theta)]^{-1}a})
$$
and $\mathbf{a'\hat{\theta}}$ is asymptotically independent of $s^2$ (to order 1/n) then
$$
\frac{\mathbf{a'\hat{\theta}-a'\theta}}{s(\mathbf{a'[F(\theta)'F(\theta)]^{-1}a})^{1/2}} \sim t_{n-p}
$$
to construct $100(1-\alpha)\%$ confidence interval for $\mathbf{a'\theta}$
$$
\mathbf{a'\theta} \pm t_{(1-\alpha/2,n-p)}s(\mathbf{a'[F(\theta)'F(\theta)]^{-1}a})^{1/2}
$$
Suppose $\mathbf{a'} = (0,...,j,...,0)$. Then, a confidence interval for the $j$-th element of $\mathbf{\theta}$ is
$$
\hat{\theta}_j \pm t_{(1-\alpha/2,n-p)}s\sqrt{\hat{c}^{j}}
$$
where $\hat{c}^{j}$ is the $j$-th diagonal element of $[\mathbf{F(\hat{\theta})'F(\hat{\theta})}]^{-1}$
```{r}
#set a seed value
set.seed(23)
#Generate x as 100 integers using seq function
x <- seq(0, 100, 1)
#Generate y as a*e^(bx)+c
y <- runif(1, 0, 20) * exp(runif(1, 0.005, 0.075) * x) + runif(101, 0, 5)
# visualize
plot(x, y)
#define our data frame
datf = data.frame(x, y)
#define our model function
mod = function(a, b, x)
a * exp(b * x)
```
In this example, we can get the starting values by using linearized version of the function $\log y = \log a + b x$. Then, we can fit a linear regression to this and use our estimates as starting values
```{r}
#get starting values by linearizing
lin_mod = lm(log(y) ~ x, data = datf)
#convert the a parameter back from the log scale; b is ok
astrt = exp(as.numeric(lin_mod$coef[1]))
bstrt = as.numeric(lin_mod$coef[2])
print(c(astrt, bstrt))
```
with `nls`, we can fit the nonlinear model via least squares
```{r}
nlin_mod = nls(y ~ mod(a, b, x),
start = list(a = astrt, b = bstrt),
data = datf)
#look at model fit summary
summary(nlin_mod)
#add prediction to plot
plot(x, y)
lines(x, predict(nlin_mod), col = "red")
```
### Nonlinear
Suppose that $h(\theta)$ is a nonlinear function of the parameters. We can use Taylor series about $\theta$
$$
h(\hat{\theta}) \approx h(\theta) + \mathbf{h}'[\hat{\theta}-\theta]
$$
where $\mathbf{h} = (\frac{\partial h}{\partial \theta_1},...,\frac{\partial h}{\partial \theta_p})'$
with
$$
\begin{aligned}
E( \hat{\theta}) &\approx \theta \\
var(\hat{\theta}) &\approx \sigma^2[\mathbf{F(\theta)'F(\theta)}]^{-1} \\
E(h(\hat{\theta})) &\approx h(\theta) \\
var(h(\hat{\theta})) &\approx \sigma^2 \mathbf{h'[F(\theta)'F(\theta)]^{-1}h}
\end{aligned}
$$
Thus,
$$
h(\hat{\theta}) \sim AN(h(\theta),\sigma^2\mathbf{h'[F(\theta)'F(\theta)]^{-1}h})
$$
and an approximate $100(1-\alpha)\%$ confidence interval for $h(\theta)$ is
$$
h(\hat{\theta}) \pm t_{(1-\alpha/2;n-p)}s(\mathbf{h'[F(\theta)'F(\theta)]^{-1}h})^{1/2}
$$
where $\mathbf{h}$ and $\mathbf{F}(\theta)$ are evaluated at $\hat{\theta}$
Regarding **prediction interval** for Y at $x=x_0$
$$
\begin{aligned}
Y_0 &= f(x_0;\theta) + \epsilon_0, \epsilon_0 \sim N(0,\sigma^2) \\
\hat{Y}_0 &= f(x_0,\hat{\theta})
\end{aligned}
$$
As $n \to \infty$, $\hat{\theta} \to \theta$, so we
$$
f(x_0, \hat{\theta}) \approx f(x_0,\theta) + \mathbf{f}_0(\mathbf{\theta})'[\hat{\theta}-\theta]
$$
where
$$
f_0(\theta)= (\frac{\partial f(x_0,\theta)}{\partial \theta_1},..,\frac{\partial f(x_0,\theta)}{\partial \theta_p})'
$$
(note: this $f_0(\theta)$ is different from $f(\theta)$).
$$
\begin{aligned}
Y_0 - \hat{Y}_0 &\approx Y_0 - f(x_0,\theta) - f_0(\theta)'[\hat{\theta}-\theta] \\
&= \epsilon_0 - f_0(\theta)'[\hat{\theta}-\theta]
\end{aligned}
$$
$$
\begin{aligned}
E(Y_0 - \hat{Y}_0) &\approx E(\epsilon_0)E(\hat{\theta}-\theta) = 0 \\
var(Y_0 - \hat{Y}_0) &\approx var(\epsilon_0 - \mathbf{(f_0(\theta)'[\hat{\theta}-\theta])}) \\
&= \sigma^2 + \sigma^2 \mathbf{f_0 (\theta)'[F(\theta)'F(\theta)]^{-1}f_0(\theta)} \\
&= \sigma^2 (1 + \mathbf{f_0 (\theta)'[F(\theta)'F(\theta)]^{-1}f_0(\theta)})
\end{aligned}
$$
Hence, combining
$$
Y_0 - \hat{Y}_0 \sim AN (0,\sigma^2 (1 + \mathbf{f_0 (\theta)'[F(\theta)'F(\theta)]^{-1}f_0(\theta)}))
$$
**Note**:
Confidence intervals for the mean response $Y_i$ (which is different from prediction intervals) can be obtained similarly.
## Non-linear Least Squares
- The LS estimate of $\theta$, $\hat{\theta}$ is the set of parameters that minimizes the residual sum of squares:\
$$
S(\hat{\theta}) = SSE(\hat{\theta}) = \sum_{i=1}^{n}\{Y_i - f(\mathbf{x_i};\hat{\theta})\}^2
$$
- to obtain the solution, we can consider the partial derivatives of $S(\theta)$ with respect to each $\theta_j$ and set them to 0, which gives a system of p equations. Each normal equation is $$
\frac{\partial S(\theta)}{\partial \theta_j} = -2\sum_{i=1}^{n}\{Y_i -f(\mathbf{x}_i;\theta)\}[\frac{\partial(\mathbf{x}_i;\theta)}{\partial \theta_j}] = 0
$$
- but we can't obtain a solution directly/analytically for this equation.
**Numerical Solutions**
- Grid search
- A "grid" of possible parameter values and see which one minimize the residual sum of squares.
- finer grid = greater accuracy
- could be inefficient, and hard when p is large.
- Gauss-Newton Algorithm
- we have an initial estimate of $\theta$ denoted as $\hat{\theta}^{(0)}$
- use a Taylor expansions of $f(\mathbf{x}_i;\theta)$ as a function of $\theta$ about the point $\hat{\theta}^{(0)}$
$$
\begin{aligned}
Y_i &= f(x_i;\theta) + \epsilon_i \\
&= f(x_i;\theta) + \sum_{j=1}^{p}\{\frac{\partial f(x_i;\theta)}{\partial \theta_j}\}_{\theta = \hat{\theta}^{(0)}} (\theta_j - \hat{\theta}^{(0)}) + \text{remainder} + \epsilon_i
\end{aligned}
$$
Equivalently,
In matrix notation,
$$
\mathbf{Y} =
\left[
\begin{array}
{c}
Y_1 \\
. \\
Y_n
\end{array}
\right]
$$
$$
\mathbf{f}(\hat{\theta}^{(0)}) =
\left[
\begin{array}
{c}
f(\mathbf{x_1,\hat{\theta}}^{(0)}) \\
. \\
f(\mathbf{x_n,\hat{\theta}}^{(0)})
\end{array}
\right]
$$
$$
\mathbf{\epsilon} =
\left[
\begin{array}
{c}
\epsilon_1 \\
. \\
\epsilon_n
\end{array}
\right]
$$
$$
\mathbf{F}(\hat{\theta}^{(0)}) =
\left[
\begin{array}
{ccc}
\frac{\partial f(x_1,\mathbf{\theta})}{\partial \theta_1} & ... & \frac{\partial f(x_1,\mathbf{\theta})}{\partial \theta_p}\\
. & . & . \\
\frac{\partial f(x_n,\mathbf{\theta})}{\partial \theta_1} & ... & \frac{\partial f(x_n,\mathbf{\theta})}{\partial \theta_p}
\end{array} \right]_{\theta = \hat{\theta}^{(0)}}
$$
Hence,
$$
\mathbf{Y} = \mathbf{f}(\hat{\theta}^{(0)}) + \mathbf{F}(\hat{\theta}^{(0)})(\theta - \hat{\theta}^{(0)}) + \epsilon + \text{remainder}
$$
where we assume that the remainder is small and the error term is only assumed to be iid with mean 0 and variance $\sigma^2$.
We can rewrite the above equation as
$$
\mathbf{Y} - \mathbf{f}(\hat{\theta}^{(0)}) \approx \mathbf{F}(\hat{\theta}^{(0)})(\theta - \hat{\theta}^{(0)}) + \epsilon
$$
where it is in the form of linear model. After we solve for $(\theta - \hat{\theta}^{(0)})$ and let it equal to $\hat{\delta}^{(1)}$\
Then we new estimate is given by adding the Gauss increment adjustment to the initial estimate $\hat{\theta}^{(1)} = \hat{\theta}^{(0)} + \hat{\delta}^{(1)}$\
We can repeat this process.
Gauss-Newton Algorithm Steps:
1. initial estimate $\hat{\theta}^{(0)}$, set j = 0
2. Taylor series expansion and calculate $\mathbf{f}(\hat{\theta}^{(j)})$ and $\mathbf{F}(\hat{\theta}^{(j)})$
3. Use OLS to get $\hat{\delta}^{(j+1)}$
4. get the new estimate $\hat{\theta}^{(j+1)}$, return to step 2
5. continue until "convergence"
6. With the final parameter estimate $\hat{\theta}$, we can estimate $\sigma^2$ if $\epsilon \sim (\mathbf{0}, \sigma^2 \mathbf{I})$ by
$$
\hat{\sigma}^2= \frac{1}{n-p}(\mathbf{Y}-\mathbf{f}(x;\hat{\theta}))'(\mathbf{Y}-\mathbf{f}(x;\hat{\theta}))
$$
**Criteria for convergence**
1. Minor change in the objective function (SSE = residual sum of squares)\
$$
\frac{|SSE(\hat{\theta}^{(j+1)})-SSE(\hat{\theta}^{(j)})|}{SSE(\hat{\theta}^{(j)})} < \gamma_1
$$
2. Minor change in the parameter estimates\
$$
|\hat{\theta}^{(j+1)}-\hat{\theta}^{(j)}| < \gamma_2
$$
3. "residual projection" criterion of [@bates1981relative]
### Alternative of Gauss-Newton Algorithm
#### Gauss-Newton Algorithm
Normal equations:
$$
\frac{\partial SSE(\theta)}{\partial \theta} = 2\mathbf{F}(\theta)'[\mathbf{Y}-\mathbf{f}(\theta)]
$$
$$
\begin{aligned}
\hat{\theta}^{(j+1)} &= \hat{\theta}^{(j)} + \hat{\delta}^{(j+1)} \\
&= \hat{\theta}^{(j)} + [\mathbf{F}((\hat{\theta})^{(j)})'\mathbf{F}(\hat{\theta}^{(j)})]^{-1}\mathbf{F}(\hat{\theta})^{(j)} \\
&= \hat{\theta}^{(j)} - \frac{1}{2}[\mathbf{F}(\hat{\theta}^{(j)})'\mathbf{F}(\hat{\theta}^{(j)})]^{-1}\frac{\partial SSE(\hat{\theta}^{(j)})}{\partial \theta}
\end{aligned}
$$
where
- $\frac{\partial SSE(\hat{\theta}^{(j)})}{\partial \theta}$ is a gradient vector (points in the direction in which the SSE increases most rapidly). This path is known as steepest ascent.\
- $[\mathbf{F}(\hat{\theta}^{(j)})'\mathbf{F}(\hat{\theta}^{(j)})]^{-1}$ indicates how far to move\
- $-1/2$: indicator of the direction of steepest descent.
#### Modified Gauss-Newton Algorithm
To avoid overstepping (the local min), we can use the modified Gauss-Newton Algorithm. We define a new proposal for $\theta$
$$
\hat{\theta}^{(j+1)} = \hat{\theta}^{(j)} + \alpha_j \hat{\delta}^{(j+1)}, 0 < \alpha_j < 1
$$
where
- $\alpha_j$ (called the "learning rate"): is used to modify the step length.
We could also have $\alpha \times 1/2$, but typically it is assumed to be absorbed into the learning rate.
A way to choose $\alpha_j$, we can use **step halving**
$$
\hat{\theta}^{(j+1)} = \hat{\theta}^{(j)} + \frac{1}{2^k}\hat{\delta}^{(j+1)}
$$
where
- $k$ is the smallest non-negative integer such that\
$$
SSE(\hat{\theta}^{(j)}+\frac{1}{2^k}\hat{\delta}^{(j+1)}) < SSE(\hat{\theta}^{(j)})
$$ which means we try $\hat{\delta}^{(j+1)}$, then $\hat{\delta}^{(j+1)}/2$, $\hat{\delta}^{(j+1)}/4$, etc.
The most general form of the convergence algorithm is
$$
\hat{\theta}^{(j+1)} = \hat{\theta}^{(j)} - \alpha_j \mathbf{A}_j \frac{\partial Q(\hat{\theta}^{(j)})}{\partial \theta}
$$
where
- $\mathbf{A}_j$ is a positive definite matrix
- $\alpha_j$ is the learning rate
- $\frac{\partial Q(\hat{\theta}^{(j)})}{\partial \theta}$is the gradient based on some objective function Q (a function of $\theta$), which is typically the SSE in nonlinear regression applications (e.g., cross-entropy for classification).
Refer back to the **Modified Gauss-Newton Algorithm**, we can see it is in this form
$$
\hat{\theta}^{(j+1)} =\hat{\theta}^{(j)} - \alpha_j[\mathbf{F}(\hat{\theta}^{(j)})'\mathbf{F}(\hat{\theta}^{(j)})]^{-1}\frac{\partial SSE(\hat{\theta}^{(j)})}{\partial \theta}
$$
where Q = SSE, $[\mathbf{F}(\hat{\theta}^{(j)})'\mathbf{F}(\hat{\theta}^{(j)})]^{-1} = \mathbf{A}$
#### Steepest Descent
(also known just "gradient descent")
$$
\hat{\theta}^{(j+1)} = \hat{\theta}^{(j)} - \alpha_j \mathbf{I}_{p \times p}\frac{\partial \mathbf{Q}(\hat{\theta}^{(j)})}{\partial \theta}
$$
- slow to converge, moves rapidly initially.
- could be use for starting values
#### Levenberg -Marquardt
$$
\hat{\theta}^{(j+1)} = \hat{\theta}^{(j)} - \alpha_j [\mathbf{F}(\hat{\theta}^{(j)})'\mathbf{F}(\hat{\theta}^{(j)})+ \tau \mathbf{I}_{p \times p}]\frac{\partial \mathbf{Q}(\hat{\theta}^{(j)})}{\partial \theta}
$$
which is a compromise between the [Gauss-Newton Algorithm] and the [Steepest Descent].
- best when $\mathbf{F}(\hat{\theta}^{(j)})'\mathbf{F}(\hat{\theta}^{(j)})$ is nearly singular ($\mathbf{F}(\hat{\theta}^{(j)})$ isn't of full rank)\
- similar to ridge regression\
- If $SSE(\hat{\theta}^{(j+1)}) < SSE(\hat{\theta}^{(j)})$, then $\tau= \tau/10$ for the next iteration. Otherwise, $\tau = 10 \tau$
#### Newton-Raphson
$$
\hat{\theta}^{(j+1)} = \hat{\theta}^{(j)} - \alpha_j [\frac{\partial^2Q(\hat{\theta}^{(j)})}{\partial \theta \partial \theta'}]^{-1}\frac{\partial \mathbf{Q}(\hat{\theta}^{(j)})}{\partial \theta}
$$
The **Hessian matrix** can be rewritten as:
$$
\frac{ \partial^2Q(\hat{ \theta}^{(j)})}{ \partial \theta \partial \theta'} = 2 \mathbf{F}((\hat{ \theta})^{(j)})' \mathbf{F} ( \hat{\theta}^{(j)}) - 2\sum_{i=1}^{n} [Y_i - f(x_i;\theta)] \frac{\partial^2f(x_i;\theta)}{\partial \theta \partial \theta'}
$$
which contains the same term that [Gauss-Newton Algorithm], combined with one containing the second partial derivatives of f(). (methods that require the second derivatives of the objective function are known as "second-order methods".)\
However, the last term $\frac{\partial^2f(x_i;\theta)}{\partial \theta \partial \theta'}$ can sometimes be non-singular.
#### Quasi-Newton
update $\theta$ according to
$$
\hat{\theta}^{(j+1)} = \hat{\theta}^{(j)} - \alpha_j \mathbf{H}_j^{-1}\frac{\partial \mathbf{Q}(\hat{\theta}^{(j)})}{\partial \theta}
$$
where $H_j$ is a symmetric positive definite approximation to the Hessian, which gets closer as $j \to \infty$.
- $\mathbf{H}_j$ is computed iteratively\
- Among first-order methods (where only first derivatives are required), this method performs best.
#### Derivative Free Methods
- **secant Method**: like [Gauss-Newton Algorithm], but calculates the derivatives numerically from past iterations.
- **Simplex Methods**
- **Genetic Algorithm**
- **Differential Evolution Algorithms**
- **Particle Swarm Optimization**
- **Ant Colony Optimization**
### Practical Considerations
To converge, algorithm need good initial estimates.
- Starting values:
- Prior or theoretical info
- A grid search or a graph of $SSE(\theta)$
- could also use OLS to get starting values.
- Model interpretation: if you have some idea regarding the form of the objective function, then you can try to guess the initial value.
- Expected Value Parameterization
- Constrained Parameters: (constraints on parameters like $\theta_i>a,a< \theta_i <b$)
- fit the model first to see if the converged parameter estimates satisfy the constraints.
- if they don't satisfy, then try re-parameterizing
#### Failure to converge
- $SSE(\theta)$ may be "flat" in a neighborhood of the minimum.
- You can try different or "better" starting values.
- Might suggest the model is too complex for the data, might consider simpler model.
#### Convergence to a Local Minimum
- Linear least squares has the property that $SSE(\theta) = \mathbf{(Y-X\beta)'(Y-X\beta)}$, which is quadratic and has a unique minimum (or maximum).
- Nonlinear east squares need not have a unique minimum
- Using different starting values can help
- If the dimension of $\theta$ is low, graph $SSE(\theta)$ as a function of $\theta_i$
- Different algorithm can help (e.g., genetic algorithm, particle swarm)
To converge, algorithms need good initial estimates.
- Starting values:
- prior or theoretical info
- A grid search or a graph
- OLS estimates as starting values
- Model interpretation
- Expected Value Parameterization
- Constrained Parameters:
- try the model without the constraints first.
- If the resulted parameter estimates does not satisfy the constraint, try re-parameterizing
```{r}
# Grid search
# choose grid of a and b values
aseq = seq(10,18,.2)
bseq = seq(.001,.075,.001)
na = length(aseq)
nb = length(bseq)
SSout = matrix(0,na*nb,3) #matrix to save output
cnt = 0
for (k in 1:na){
for (j in 1:nb){
cnt = cnt+1
ypred = mod(aseq[k],bseq[j],x) #evaluate model w/ these parms
ss = sum((y-ypred)^2) #this is our SSE objective function
#save values of a, b, and SSE
SSout[cnt,1]=aseq[k]
SSout[cnt,2]=bseq[j]
SSout[cnt,3]=ss
}
}
#find minimum SSE and associated a,b values
mn_indx = which.min(SSout[,3])
astrt = SSout[mn_indx,1]
bstrt = SSout[mn_indx,2]
#now, run nls function with these starting values
nlin_modG=nls(y~mod(a,b,x),start=list(a=astrt,b=bstrt))
nlin_modG
# Note, the package `nls_multstart` will allow you
# to do a grid search without programming your own loop
```
For prediction interval
```{r}
plotFit(
nlin_modG,
interval = "both",
pch = 19,
shade = TRUE,
col.conf = "skyblue4",
col.pred = "lightskyblue2",
data = datf
)
```
Based on the forms of your function, you can also have programmed starting values from `nls` function (e.e.g, logistic growth, asymptotic regression, etc).
```{r}
apropos("^SS")
```
For example, a logistic growth model:
$$
P = \frac{K}{1+ exp(P_0+ rt)} + \epsilon
$$
where
- P = population at time t
- K = carrying capacity
- r = population growth rate
but in `R` you have slight different parameterization:
$$
P = \frac{asym}{1 + exp(\frac{xmid - t}{scal})}
$$
where
- $asym$ = carrying capacity
- $xmid$ = the x value at the inflection point of the curve
- $scal$ = scaling parameter.
Hence, you have
- $K = asym$
- $r = -1/scal$
- $P_0 = -rxmid$
```{r}
# simulated data
time <- c(1, 2, 3, 5, 10, 15, 20, 25, 30, 35)
population <-
c(2.8, 4.2, 3.5, 6.3, 15.7, 21.3, 23.7, 25.1, 25.8, 25.9)
plot(time, population, las = 1, pch = 16)
# model fitting
logisticModelSS <- nls(population ~ SSlogis(time, Asym, xmid, scal))
summary(logisticModelSS)
coef(logisticModelSS)
```
Other parameterization
```{r}
#convert to other parameterization
Ks = as.numeric(coef(logisticModelSS)[1])
rs = -1 / as.numeric(coef(logisticModelSS)[3])
Pos = -rs * as.numeric(coef(logisticModelSS)[2])
#let's refit with these parameters
logisticModel <-
nls(population ~ K / (1 + exp(Po + r * time)),
start = list(Po = Pos, r = rs, K = Ks))
summary(logisticModel)
```
```{r}
#note: initial values = solution (highly unusual, but ok)
plot(time, population, las = 1, pch = 16)
lines(time, predict(logisticModel), col = "red")
```
If can also define your own self-starting function if your models are uncommon (built in `nls`)
Example is based on [@Schabenberger_2001]
```{r}
#Load data
dat <- read.table("images/dat.txt", header = T)
# plot
dat.plot <-
ggplot(dat) + geom_point(aes(
x = no3,
y = ryp,
color = as.factor(depth)
)) +
labs(color = 'Depth (cm)') + xlab('Soil NO3') +
ylab('relative yield percent')
dat.plot
```
The suggested model (known as plateau model) is
$$
E(Y_{ij}) = (\beta_{0j} + \beta_{1j}N_{ij})I_{N_{ij}\le \alpha_j} + (\beta_{0j} + \beta_{1j}\alpha_j)I_{N_{ij} > \alpha_j}
$$
where
- N is an observation
- i is a particular observation
- j = 1,2 corresponding to depths (30,60)
```{r}
#First define model as a function
nonlinModel <- function(predictor, b0, b1, alpha) {
ifelse(predictor <= alpha,
#if observation less than cutoff simple linear model
b0 + b1 * predictor,
b0 + b1 * alpha) #otherwise flat line
}
```
define `selfStart` function. Because we defined our model to be linear in the first part and then plateau (remain constant) we can use the first half of our predictors (sorted by increasing value) to get an initial estimate for the slope and intercept of the model, and the last predictor value (alpha) can be the starting value for the plateau parameter.
```{r}
nonlinModelInit <- function(mCall, LHS, data) {
# sort data by increasing predictor value -
# done so we can just use the low level
# no3 conc to fit a simple model
xy <- sortedXyData(mCall[['predictor']], LHS, data)
n <- nrow(xy)
#For the first half of the data a simple linear model is fit
lmFit <- lm(xy[1:(n / 2), 'y'] ~ xy[1:(n / 2), 'x'])
b0 <- coef(lmFit)[1]
b1 <- coef(lmFit)[2]
# for the cut off to the flat part select the last
# x value used in creating linear model
alpha <- xy[(n / 2), 'x']
value <- c(b0, b1, alpha)
names(value) <- mCall[c('b0', 'b1', 'alpha')]
value
}
```
combine model and custom function to calculate starting values.
```{r}
SS_nonlinModel <- selfStart(nonlinModel,nonlinModelInit,c('b0','b1','alpha'))
```
```{r}
# Above code defined model and selfStart now just need to call it for each of the depths
sep30_nls <-
nls(ryp ~ SS_nonlinModel(predictor = no3, b0, b1, alpha),
data = dat[dat$depth == 30,])
sep60_nls <-
nls(ryp ~ SS_nonlinModel(predictor = no3, b0, b1, alpha),
data = dat[dat$depth == 60,])
par(mfrow = c(1, 2))
plotFit(
sep30_nls,
interval = "both",
pch = 19,
shade = TRUE,
col.conf = "skyblue4",
col.pred = "lightskyblue2",
data = dat[dat$depth == 30,],
main = 'Results 30 cm depth',
ylab = 'relative yield percent',
xlab = 'Soil NO3 concentration',
xlim = c(0, 120)
)
plotFit(
sep60_nls,
interval = "both",
pch = 19,
shade = TRUE,
col.conf = "lightpink4",
col.pred = "lightpink2",
data = dat[dat$depth == 60,],
main = 'Results 60 cm depth',
ylab = 'relative yield percent',
xlab = 'Soil NO3 concentration',
xlim = c(0, 120)
)
```
```{r}
summary(sep30_nls)
summary(sep60_nls)
```
Instead of modeling the depths model separately we model them together - so there is a common slope, intercept, and plateau.
```{r reduce-model}
red_nls <-
nls(ryp ~ SS_nonlinModel(predictor = no3, b0, b1, alpha),
data = dat)
summary(red_nls)
par(mfrow = c(1, 1))
plotFit(
red_nls,
interval = "both",
pch = 19,
shade = TRUE,
col.conf = "lightblue4",
col.pred = "lightblue2",
data = dat,
main = 'Results combined',
ylab = 'relative yield percent',
xlab = 'Soil NO3 concentration'
)
```
Examine residual values for the combined model.
```{r reduce-model-resid}
library(nlstools)
# using nlstools nlsResiduals function to get some quick residual plots
# can also use test.nlsResiduals(resid)
# https://www.rdocumentation.org/packages/nlstools/versions/1.0-2
resid <- nlsResiduals(red_nls)
plot(resid)
```
can we test whether the parameters for the two soil depth fits are significantly different? To know if the combined model is appropriate, we consider a parameterization where we let the parameters for the 60cm model be equal to the parameters from the 30cm model plus some increment:
$$
\begin{aligned}
\beta_{02} &= \beta_{01} + d_0 \\
\beta_{12} &= \beta_{11} + d_1 \\
\alpha_{2} &= \alpha_{1} + d_a
\end{aligned}
$$
We can implement this in the following function:
```{r full-model, eval=TRUE}
nonlinModelF <- function(predictor,soildep,b01,b11,a1,d0,d1,da){
b02 = b01 + d0 #make 60cm parms = 30cm parms + increment
b12 = b11 + d1
a2 = a1 + da
y1 = ifelse(predictor<=a1,
#if observation less than cutoff simple linear model
b01+b11*predictor,
b01+b11*a1) # otherwise flat line
y2 = ifelse(predictor<=a2,
b02+b12*predictor,
b02+b12*a2)
y = y1*(soildep == 30) + y2*(soildep == 60) #combine models
return(y)
}
```
Starting values are easy now because we fit each model individually.
```{r full-model-fit, eval=TRUE}
Soil_full = nls(
ryp ~ nonlinModelF(
predictor = no3,
soildep = depth,
b01,
b11,
a1,
d0,
d1,
da
),
data = dat,
start = list(
b01 = 15.2,
b11 = 3.58,
a1 = 23.13,
d0 = -9.74,
d1 = 2.11,
da = -6.85
)
)
summary(Soil_full)
```
So, the increment parameters, $d_1$,$d_2$,$d_a$ are all significantly different from 0, suggesting that we should have two models here.
### Model/Estimation Adequacy
[@bates1980relative] assess nonlinearity in terms of 2 components of curvature:
- **Intrinsic nonlinearity**: the degree of bending and twisting in $f(\theta)$; our estimation approach assumes that the true function is relatively flat (planar) in the neighborhood fo $\hat{\theta}$, which would not be true if $f()$ has a lot of "bending" in the neighborhood of $\hat{\theta}$ (independent of parameterization)
- If bad, the distribution of residuals will be seriously distorted
- slow to converge
- difficult to identify ( could use this function `rms.curve`)
- Solution:
- could use higher order Taylor expansions estimation
- Bayesian method
- **Parameter effects nonlinearity**: degree to which curvature (nonlinearity) is affected by choice of $\theta$ (data dependent; dependent on parameterization)
- leads to problems with inference on $\hat{\theta}$
- `rms.curve` in `MASS` can identify
- bootstrap-based inference can also be used
- Solution: try to reparaemterize.
```{r}
#check parameter effects and intrinsic curvature
modD = deriv3(~ a*exp(b*x), c("a","b"),function(a,b,x) NULL)
nlin_modD = nls(y ~ modD(a, b, x),
start = list(a = astrt, b = bstrt),
data = datf)
rms.curv(nlin_modD)
```
In linear model, we have [Linear Regression], we have goodness of fit measure as $R^2$:
$$
\begin{aligned}
R^2 &= \frac{SSR}{SSTO} = 1- \frac{SSE}{SSTO} \\
&= \frac{\sum_{i=1}^n (\hat{Y}_i- \bar{Y})^2}{\sum_{i=1}^n (Y_i- \bar{Y})^2} = 1- \frac{\sum_{i=1}^n ({Y}_i- \hat{Y})^2}{\sum_{i=1}^n (Y_i- \bar{Y})^2}
\end{aligned}
$$
but not valid in the nonlinear case because the error sum of squares and model sum of squares do not add to the total corrected sum of squares
$$
SSR + SSE \neq SST
$$
but we can use pseudo-$R^2$:
$$
R^2_{pseudo} = 1 - \frac{\sum_{i=1}^n ({Y}_i- \hat{Y})^2}{\sum_{i=1}^n (Y_i- \bar{Y})^2}
$$
But we can't interpret this as the proportion of variability explained by the model. We should use as a relative comparison of different models.
**Residual Plots**: standardize, similar to OLS. useful when the intrinsic curvature is small:
The studentized residuals
$$
r_i = \frac{e_i}{s\sqrt{1-\hat{c}_i}}
$$
where $\hat{c}_i$is the i-th diagonal of $\mathbf{\hat{H}= F(\hat{\theta})[F(\hat{\theta})'F(\hat{\theta})]^{-1}F(\hat{\theta})'}$
We could have problems of
- Collinearity: the condition number of $\mathbf{[F(\hat{\theta})'F(\hat{\theta})]^{-1}}$ should be less than 30. Follow [@Magel_1987]; reparameterize if possible
- Leverage: Like [OLS][Ordinary Least Squares], but consider $\mathbf{\hat{H}= F(\hat{\theta})[F(\hat{\theta})'F(\hat{\theta})]^{-1}F(\hat{\theta})'}$ (also known as "tangent plant hat matrix") [@Laurent_1992]
- Heterogeneous Errors: weighted Non-linear Least Squares
- Correlated Errors:
- Generalized Nonlinear Least Squares
- Nonlinear Mixed Models
- Bayesian methods
### Application
$$
y_i = \frac{\theta_0 + \theta_1 x_i}{1 + \theta_2 \exp(0.4 x_i)} + \epsilon_i
$$
where $i = 1,..,n$
Get the starting values
```{r echo=FALSE}
library(dplyr)
my_data <-
read.delim("images/S21hw1pr4.txt", header = F, sep = "") %>%
dplyr::rename(x = V1, y = V2)
```
```{r}
plot(my_data)
```
We notice that $Y_{max} = \theta_0 + \theta_1 x_i$ in which we can find x_i from data
```{r}
max(my_data$y)
my_data$x[which.max(my_data$y)]
```
hence, $x = 0.0094$ when $y = 2.6722$ when we have the first equation as
$$
2.6722 = \theta_0 + 0.0094 \theta_1
$$
$$
\theta_0 + 0.0094 \theta_1 + 0 \theta_2 = 2.6722
$$
Secondly, we notice that we can obtain the "average" of y when
$$
1+ \theta_2 exp(0.4 x) = 2
$$
then we can find this average numbers of x and y
```{r}
# find mean y
mean(my_data$y)
# find y closest to its mean
my_data$y[which.min(abs(my_data$y - (mean(my_data$y))))]
# find x closest to the mean y
my_data$x[which.min(abs(my_data$y - (mean(my_data$y))))]
```
we have the second equation
$$
1 + \theta_2 exp(0.4*11.0648) = 2
$$
$$