-
-
Notifications
You must be signed in to change notification settings - Fork 39
/
17-moderation.Rmd
602 lines (449 loc) · 13 KB
/
17-moderation.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# Moderation
- Spotlight Analysis: Compare the mean of the dependent of the two groups (treatment and control) at every value ([Simple Slopes Analysis])
- Floodlight Analysis: is spotlight analysis on the whole range of the moderator ([Johnson-Neyman intervals])
Other Resources:
- `BANOVAL` : floodlight analysis on Bayesian ANOVA models
- `cSEM` : `doFloodlightAnalysis` in SEM model
- [@spiller2013]
Terminology:
- Main effects (slopes): coefficients that do no involve interaction terms
- Simple slope: when a continuous independent variable interact with a moderating variable, its slope at a particular level of the moderating variable
- Simple effect: when a categorical independent variable interacts with a moderating variable, its effect at a particular level of the moderating variable.
Example:
$$
Y = \beta_0 + \beta_1 X + \beta_2 M + \beta_3 X \times M
$$
where
- $\beta_0$ = intercept
- $\beta_1$ = simple effect (slope) of $X$ (independent variable)
- $\beta_2$ = simple effect (slope) of $M$ (moderating variable)
- $\beta_3$ = interaction of $X$ and $M$
Three types of interactions:
1. [Continuous by continuous]
2. [Continuous by categorical]
3. [Categorical by categorical]
When interpreting the three-way interactions, one can use the slope difference test [@dawson2006probing]
## emmeans package
```{r, eval=FALSE}
install.packages("emmeans")
```
```{r}
library(emmeans)
```
Data set is from [UCLA seminar](https://stats.oarc.ucla.edu/r/seminars/interactions-r/) where `gender` and `prog` are categorical
```{r}
dat <- readRDS("data/exercise.rds") %>%
mutate(prog = factor(prog, labels = c("jog", "swim", "read"))) %>%
mutate(gender = factor(gender, labels = c("male", "female")))
```
### Continuous by continuous
```{r}
contcont <- lm(loss~hours*effort,data=dat)
summary(contcont)
```
Simple slopes for a continuous by continuous model
Spotlight analysis [@aiken2005interaction]: usually pick 3 values of moderating variable:
- Mean Moderating Variable + $\sigma \times$ (Moderating variable)
- Mean Moderating Variable
- Mean Moderating Variable - $\sigma \times$ (Moderating variable)
```{r}
effar <- round(mean(dat$effort) + sd(dat$effort), 1)
effr <- round(mean(dat$effort), 1)
effbr <- round(mean(dat$effort) - sd(dat$effort), 1)
```
```{r}
# specify list of points
mylist <- list(effort = c(effbr, effr, effar))
# get the estimates
emtrends(contcont, ~ effort, var = "hours", at = mylist)
# plot
mylist <- list(hours = seq(0, 4, by = 0.4),
effort = c(effbr, effr, effar))
emmip(contcont, effort ~ hours, at = mylist, CIs = TRUE)
# statistical test for slope difference
emtrends(
contcont,
pairwise ~ effort,
var = "hours",
at = mylist,
adjust = "none"
)
```
The 3 p-values are the same as the interaction term.
For publication, we use
```{r}
library(ggplot2)
# data
mylist <- list(hours = seq(0, 4, by = 0.4),
effort = c(effbr, effr, effar))
contcontdat <-
emmip(contcont,
effort ~ hours,
at = mylist,
CIs = TRUE,
plotit = FALSE)
contcontdat$feffort <- factor(contcontdat$effort)
levels(contcontdat$feffort) <- c("low", "med", "high")
# plot
p <-
ggplot(data = contcontdat,
aes(x = hours, y = yvar, color = feffort)) +
geom_line()
p1 <-
p +
geom_ribbon(aes(ymax = UCL, ymin = LCL, fill = feffort),
alpha = 0.4)
p1 + labs(x = "Hours",
y = "Weight Loss",
color = "Effort",
fill = "Effort")
```
### Continuous by categorical
```{r}
# use Female as basline
dat$gender <- relevel(dat$gender, ref = "female")
contcat <- lm(loss ~ hours * gender, data = dat)
summary(contcat)
```
Get simple slopes by each level of the categorical moderator
```{r}
emtrends(contcat, ~ gender, var = "hours")
# test difference in slopes
emtrends(contcat, pairwise ~ gender, var = "hours")
# which is the same as the interaction term
```
```{r}
# plot
(mylist <- list(
hours = seq(0, 4, by = 0.4),
gender = c("female", "male")
))
emmip(contcat, gender ~ hours, at = mylist, CIs = TRUE)
```
### Categorical by categorical
```{r}
# relevel baseline
dat$prog <- relevel(dat$prog, ref = "read")
dat$gender <- relevel(dat$gender, ref = "female")
```
```{r}
catcat <- lm(loss ~ gender * prog, data = dat)
summary(catcat)
```
Simple effects
```{r}
emcatcat <- emmeans(catcat, ~ gender*prog)
# differences in predicted values
contrast(emcatcat,
"revpairwise",
by = "prog",
adjust = "bonferroni")
```
Plot
```{r}
emmip(catcat, prog ~ gender,CIs=TRUE)
```
Bar graph
```{r}
catcatdat <- emmip(catcat,
gender ~ prog,
CIs = TRUE,
plotit = FALSE)
p <-
ggplot(data = catcatdat,
aes(x = prog, y = yvar, fill = gender)) +
geom_bar(stat = "identity", position = "dodge")
p1 <-
p + geom_errorbar(
position = position_dodge(.9),
width = .25,
aes(ymax = UCL, ymin = LCL),
alpha = 0.3
)
p1 + labs(x = "Program", y = "Weight Loss", fill = "Gender")
```
## probmod package
- Not recommend: package has serious problem with subscript.
```{r, eval = FALSE}
install.packages("probemod")
```
```{r, eval = FALSE}
library(probemod)
myModel <-
lm(loss ~ hours * gender, data = dat %>%
select(loss, hours, gender))
jnresults <- jn(myModel,
dv = 'loss',
iv = 'hours',
mod = 'gender')
pickapoint(
myModel,
dv = 'loss',
iv = 'hours',
mod = 'gender',
alpha = .01
)
plot(jnresults)
```
## interactions package
- Recommend
```{r, eval = FALSE}
install.packages("interactions")
```
### Continuous interaction
- (at least one of the two variables is continuous)
```{r}
library(interactions)
library(jtools) # for summ()
states <- as.data.frame(state.x77)
fiti <- lm(Income ~ Illiteracy * Murder + `HS Grad`, data = states)
summ(fiti)
```
For continuous moderator, the three values chosen are:
- -1 SD above the mean
- The mean
- -1 SD below the mean
```{r}
interact_plot(fiti,
pred = Illiteracy,
modx = Murder,
# if you don't want the plot to mean-center
# centered = "none",
# exclude the mean value of the moderator
# modx.values = "plus-minus",
# split moderator's distribution into 3 groups
# modx.values = "terciles"
plot.points = T, # overlay data
# different shape for differennt levels of the moderator
point.shape = T,
# if two data points are on top one another,
# this moves them apart by little
jitter = 0.1,
# other appearance option
x.label = "X label",
y.label = "Y label",
main.title = "Title",
legend.main = "Legend Title",
colors = "blue",
# include confidence band
interval = TRUE,
int.width = 0.9,
robust = TRUE # use robust SE
)
```
To include weights from the regression inn the plot
```{r}
fiti <- lm(Income ~ Illiteracy * Murder,
data = states,
weights = Population)
interact_plot(fiti,
pred = Illiteracy,
modx = Murder,
plot.points = TRUE)
```
Partial Effect Plot
```{r}
library(ggplot2)
data(cars)
fitc <- lm(cty ~ year + cyl * displ + class + fl + drv,
data = mpg)
summ(fitc)
interact_plot(
fitc,
pred = displ,
modx = cyl,
# the observed data is based on displ, cyl, and model error
partial.residuals = TRUE,
modx.values = c(4, 5, 6, 8)
)
```
Check linearity assumption in the model
Plot the lines based on the subsample (red line), and whole sample (black line)
```{r}
x_2 <- runif(n = 200, min = -3, max = 3)
w <- rbinom(n = 200, size = 1, prob = 0.5)
err <- rnorm(n = 200, mean = 0, sd = 4)
y_2 <- 2.5 - x_2 ^ 2 - 5 * w + 2 * w * (x_2 ^ 2) + err
data_2 <- as.data.frame(cbind(x_2, y_2, w))
model_2 <- lm(y_2 ~ x_2 * w, data = data_2)
summ(model_2)
interact_plot(
model_2,
pred = x_2,
modx = w,
linearity.check = TRUE,
plot.points = TRUE
)
```
#### Simple Slopes Analysis
- continuous by continuous variable interaction (still work for binary)
- conditional slope of the variable of interest (i.e., the slope of $X$ when we hold $M$ constant at a value)
Using `sim_slopes` it will
- mean-center all variables except the variable of interest
- For moderator that is
- Continuous, it will pick mean, and plus/minus 1 SD
- Categorical, it will use all factor
`sim_slopes` requires
- A regression model with an interaction term)
- Variable of interest (`pred =`)
- Moderator: (`modx =`)
```{r}
sim_slopes(fiti,
pred = Illiteracy,
modx = Murder,
johnson_neyman = FALSE)
# plot the coefficients
ss <- sim_slopes(fiti,
pred = Illiteracy,
modx = Murder,
modx.values = c(0, 5, 10))
plot(ss)
# table
ss <- sim_slopes(fiti,
pred = Illiteracy,
modx = Murder,
modx.values = c(0, 5, 10))
library(huxtable)
as_huxtable(ss)
```
#### Johnson-Neyman intervals
To know all the values of the moderator for which the slope of the variable of interest will be statistically significant, we can use the Johnson-Neyman interval [@johnson1936tests]
Even though we kind of know that the alpha level when implementing the Johnson-Neyman interval is not correct [@bauer2005probing], not until recently that there is a correction for the type I and II errors [@esarey2018marginal].
Since Johnson-Neyman inflates the type I error (comparisons across all values of the moderator)
```{r}
sim_slopes(
fiti,
pred = Illiteracy,
modx = Murder,
johnson_neyman = TRUE,
control.fdr = TRUE,
# correction for type I and II
# include conditional intecepts
# cond.int = TRUE,
robust = "HC3",
# rubust SE
# don't mean-centered non-focal variables
# centered = "none",
jnalpha = 0.05
)
```
For plotting, we can use `johnson_neyman`
```{r}
johnson_neyman(fiti,
pred = Illiteracy,
modx = Murder,
# correction for type I and II
control.fdr = TRUE,
alpha = .05)
```
Note:
- y-axis is the **conditional slope** of the variable of interest
#### 3-way interaction
```{r}
# fita3 <-
# lm(rating ~ privileges * critical * learning,
# data = attitude)
#
# probe_interaction(
# fita3,
# pred = critical,
# modx = learning,
# mod2 = privileges,
# alpha = .1
# )
mtcars$cyl <- factor(mtcars$cyl,
labels = c("4 cylinder", "6 cylinder", "8 cylinder"))
fitc3 <- lm(mpg ~ hp * wt * cyl, data = mtcars)
interact_plot(fitc3,
pred = hp,
modx = wt,
mod2 = cyl) +
theme_apa(legend.pos = "bottomright")
```
Johnson-Neyman 3-way interaction
```{r}
library(survey)
data(api)
dstrat <- svydesign(
id = ~ 1,
strata = ~ stype,
weights = ~ pw,
data = apistrat,
fpc = ~ fpc
)
regmodel3 <-
survey::svyglm(api00 ~ avg.ed * growth * enroll, design = dstrat)
sim_slopes(
regmodel3,
pred = growth,
modx = avg.ed,
mod2 = enroll,
jnplot = TRUE
)
```
Report
```{r}
ss3 <-
sim_slopes(regmodel3,
pred = growth,
modx = avg.ed,
mod2 = enroll)
plot(ss3)
as_huxtable(ss3)
```
### Categorical interaction
```{r}
library(ggplot2)
mpg2 <- mpg %>%
mutate(cyl = factor(cyl))
mpg2["auto"] <- "auto"
mpg2$auto[mpg2$trans %in% c("manual(m5)", "manual(m6)")] <- "manual"
mpg2$auto <- factor(mpg2$auto)
mpg2["fwd"] <- "2wd"
mpg2$fwd[mpg2$drv == "4"] <- "4wd"
mpg2$fwd <- factor(mpg2$fwd)
## Drop the two cars with 5 cylinders (rest are 4, 6, or 8)
mpg2 <- mpg2[mpg2$cyl != "5", ]
## Fit the model
fit3 <- lm(cty ~ cyl * fwd * auto, data = mpg2)
library(jtools) # for summ()
summ(fit3)
```
```{r}
cat_plot(fit3,
pred = cyl,
modx = fwd,
plot.points = T)
#line plots
cat_plot(
fit3,
pred = cyl,
modx = fwd,
geom = "line",
point.shape = TRUE,
# colors = "Set2", # choose color
vary.lty = TRUE
)
# bar plot
cat_plot(
fit3,
pred = cyl,
modx = fwd,
geom = "bar",
interval = T,
plot.points = TRUE
)
```
## interactionR package
- For publication purposes
- Following
- [@knol2012recommendations] for presentation
- [@hosmer1992confidence] for confidence intervals based on the delta method
- [@zou2008estimation] for variance recovery "mover" method
- [@assmann1996confidence] for bootstrapping
```{r, eval = FALSE}
install.packages("interactionR")
```
## sjPlot package
- For publication purposes (recommend, but more advanced)
- [link](https://strengejacke.github.io/sjPlot/articles/plot_interactions.html)