-
Notifications
You must be signed in to change notification settings - Fork 25
/
clinical-task-hpsearch.py
238 lines (169 loc) · 7.85 KB
/
clinical-task-hpsearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/env python
import sys
sys.path.append('../')
import meta_dataloader.TCGA
import models.mlp, models.gcn
import numpy as np
import data.gene_graphs
import collections
import sklearn.metrics
import sklearn.model_selection
import pandas as pd
import sys
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-seed', type=int, default=0)
parser.add_argument('-ntrain', type=int, default=50)
parser.add_argument('-task', type=str, default="histological_type")
parser.add_argument('-study', type=str, default="LGG")
parser.add_argument('-graph', type=str, default="stringdb")
args = parser.parse_args()
print(args)
tasks = meta_dataloader.TCGA.TCGAMeta(download=True,
min_samples_per_class=10,
gene_symbol_map_file="data/genenames_code_map_Feb2019.txt")
# for taskid in tasks.task_ids:
# if "BRCA" in taskid:
# print(taskid)
# clinical_M PAM50Call_RNAseq
task = meta_dataloader.TCGA.TCGATask((args.task, args.study), gene_symbol_map_file="data/genenames_code_map_Feb2019.txt")
print(task.id)
print(task._samples.shape)
print(np.asarray(task._labels).shape)
print(collections.Counter(task._labels))
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(task._samples,
task._labels,
stratify=task._labels,
train_size=args.ntrain,
test_size=100,
shuffle=True,
random_state=args.seed
)
X_test, X_valid, y_test, y_valid = sklearn.model_selection.train_test_split(X_test,
y_test,
stratify=y_test,
train_size=50,
test_size=50,
shuffle=True,
random_state=args.seed
)
import skopt, collections
from skopt.space import Real, Integer, Categorical
def doMLP():
skopt_args = collections.OrderedDict()
skopt_args["lr"]=Integer(2, 6)
skopt_args["channels"]=Integer(6, 12)
skopt_args["layers"]=Integer(1, 3)
optimizer = skopt.Optimizer(dimensions=skopt_args.values(),
base_estimator="GP",
n_initial_points=3,
random_state=args.seed)
print(skopt_args)
best_valid_metric = 0
test_for_best_valid_metric = 0
best_config = None
already_done = set()
for i in range(30):
suggestion = optimizer.ask()
if str(suggestion) in already_done:
continue
already_done.add(str(suggestion))
sdict = dict(zip(skopt_args.keys(),suggestion))
sdict["lr"] = 10**float((-sdict["lr"]))
sdict["channels"] = 2**sdict["channels"]
print(sdict)
model = models.mlp.MLP(name="MLP",
num_layer=sdict["layers"],
channels=sdict["channels"],
lr=sdict["lr"],
num_epochs=100,
patience=50,
cuda=True,
metric=sklearn.metrics.accuracy_score,
verbose=False,
seed=args.seed)
model.fit(X_train, y_train)
y_valid_pred = model.predict(X_valid)
valid_metric = sklearn.metrics.accuracy_score(y_valid, np.argmax(y_valid_pred,axis=1))
opt_results = optimizer.tell(suggestion, - valid_metric)
#record metrics to write and plot
if best_valid_metric < valid_metric:
best_valid_metric = valid_metric
best_config = sdict
y_test_pred = model.predict(X_test)
test_metric = sklearn.metrics.accuracy_score(y_test, np.argmax(y_test_pred,axis=1))
test_for_best_valid_metric = test_metric
print(i,"This result:",valid_metric, sdict)
print("#Final Results", test_for_best_valid_metric, best_config)
return test_metric, best_config
results_mlp = doMLP()
def doGGC():
if args.graph == "stringdb":
graph = data.gene_graphs.StringDBGraph(datastore="./data")
elif args.graph == "genemania":
graph = data.gene_graphs.GeneManiaGraph()
else:
print("unknown graph")
sys.exit(1)
adj = graph.adj()
import gc
gc.collect()
skopt_args = collections.OrderedDict()
skopt_args["lr"]=Integer(3, 5)
#skopt_args["channels"]=Integer(4, 5)
#skopt_args["embedding"]=Integer(4, 5)
skopt_args["num_layer"]=Integer(2, 3)
skopt_args["prepool_extralayers"]=Integer(1, 2)
optimizer = skopt.Optimizer(dimensions=skopt_args.values(),
base_estimator="GP",
n_initial_points=4,
random_state=args.seed)
print(skopt_args)
best_valid_metric = 0
test_for_best_valid_metric = 0
best_config = None
already_done = set()
for i in range(10):
import gc
gc.collect()
suggestion = optimizer.ask()
if str(suggestion) in already_done:
continue
already_done.add(str(suggestion))
sdict = dict(zip(skopt_args.keys(),suggestion))
sdict["lr"] = 10**float((-sdict["lr"]))
sdict["channels"] = 32#2**sdict["channels"]
sdict["embedding"] = 32#2**sdict["embedding"]
print(sdict)
model = models.gcn.GCN(name="GCN_lay3_chan64_emb32_dropout_agg_hierarchy",
dropout=False,
cuda=True,
num_layer=sdict["num_layer"],
prepool_extralayers=sdict["prepool_extralayers"],
channels=sdict["channels"],
embedding=sdict["embedding"],
aggregation="hierarchy",
lr=sdict["lr"],
num_epochs=100,
patience=20,
verbose=True,
seed=args.seed
)
model.fit(X_train, y_train, adj)
y_valid_pred = model.predict(X_valid)
valid_metric = sklearn.metrics.accuracy_score(y_valid, np.argmax(y_valid_pred,axis=1))
opt_results = optimizer.tell(suggestion, - valid_metric)
#record metrics to write and plot
if best_valid_metric < valid_metric:
best_valid_metric = valid_metric
print("best_valid_metric", best_valid_metric, sdict)
best_config = sdict
y_test_pred = model.predict(X_test)
test_metric = sklearn.metrics.accuracy_score(y_test, np.argmax(y_test_pred,axis=1))
test_for_best_valid_metric = test_metric
print(i,"This result:",valid_metric, sdict)
print("#Final Results", test_for_best_valid_metric, best_config)
return test_for_best_valid_metric, best_config
results_ggc = doGGC()
print("####GGC", args,results_ggc)
print("####MLP", args,results_mlp)