-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathstream.py
165 lines (131 loc) · 6.01 KB
/
stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy
from fuel.datasets import TextFile
from fuel.schemes import ConstantScheme
from fuel.streams import DataStream
from fuel.transformers import (
Merge, Batch, Filter, Padding, SortMapping, Unpack, Mapping)
from six.moves import cPickle
def _ensure_special_tokens(vocab, bos_idx=0, eos_idx=0, unk_idx=1):
"""Ensures special tokens exist in the dictionary."""
# remove tokens if they exist in some other index
tokens_to_remove = [k for k, v in vocab.items()
if v in [bos_idx, eos_idx, unk_idx]]
for token in tokens_to_remove:
vocab.pop(token)
# put corresponding item
vocab['<S>'] = bos_idx
vocab['</S>'] = eos_idx
vocab['<UNK>'] = unk_idx
return vocab
def _length(sentence_pair):
"""Assumes target is the last element in the tuple."""
return len(sentence_pair[-1])
class PaddingWithEOS(Padding):
"""Padds a stream with given end of sequence idx."""
def __init__(self, data_stream, eos_idx, **kwargs):
kwargs['data_stream'] = data_stream
self.eos_idx = eos_idx
super(PaddingWithEOS, self).__init__(**kwargs)
def get_data_from_batch(self, request=None):
if request is not None:
raise ValueError
data = list(next(self.child_epoch_iterator))
data_with_masks = []
for i, (source, source_data) in enumerate(
zip(self.data_stream.sources, data)):
if source not in self.mask_sources:
data_with_masks.append(source_data)
continue
shapes = [numpy.asarray(sample).shape for sample in source_data]
lengths = [shape[0] for shape in shapes]
max_sequence_length = max(lengths)
rest_shape = shapes[0][1:]
if not all([shape[1:] == rest_shape for shape in shapes]):
raise ValueError("All dimensions except length must be equal")
dtype = numpy.asarray(source_data[0]).dtype
padded_data = numpy.ones(
(len(source_data), max_sequence_length) + rest_shape,
dtype=dtype) * self.eos_idx[i]
for i, sample in enumerate(source_data):
padded_data[i, :len(sample)] = sample
data_with_masks.append(padded_data)
mask = numpy.zeros((len(source_data), max_sequence_length),
self.mask_dtype)
for i, sequence_length in enumerate(lengths):
mask[i, :sequence_length] = 1
data_with_masks.append(mask)
return tuple(data_with_masks)
class _oov_to_unk(object):
"""Maps out of vocabulary token index to unk token index."""
def __init__(self, src_vocab_size=30000, trg_vocab_size=30000,
unk_id=1):
self.src_vocab_size = src_vocab_size
self.trg_vocab_size = trg_vocab_size
self.unk_id = unk_id
def __call__(self, sentence_pair):
return ([x if x < self.src_vocab_size else self.unk_id
for x in sentence_pair[0]],
[x if x < self.trg_vocab_size else self.unk_id
for x in sentence_pair[1]])
class _too_long(object):
"""Filters sequences longer than given sequence length."""
def __init__(self, seq_len=50):
self.seq_len = seq_len
def __call__(self, sentence_pair):
return all([len(sentence) <= self.seq_len
for sentence in sentence_pair])
def get_tr_stream(src_vocab, trg_vocab, src_data, trg_data,
src_vocab_size=30000, trg_vocab_size=30000, unk_id=1,
seq_len=50, batch_size=80, sort_k_batches=12, **kwargs):
"""Prepares the training data stream."""
# Load dictionaries and ensure special tokens exist
src_vocab = _ensure_special_tokens(
src_vocab if isinstance(src_vocab, dict)
else cPickle.load(open(src_vocab)),
bos_idx=0, eos_idx=src_vocab_size - 1, unk_idx=unk_id)
trg_vocab = _ensure_special_tokens(
trg_vocab if isinstance(trg_vocab, dict) else
cPickle.load(open(trg_vocab)),
bos_idx=0, eos_idx=trg_vocab_size - 1, unk_idx=unk_id)
# Get text files from both source and target
src_dataset = TextFile([src_data], src_vocab, None)
trg_dataset = TextFile([trg_data], trg_vocab, None)
# Merge them to get a source, target pair
stream = Merge([src_dataset.get_example_stream(),
trg_dataset.get_example_stream()],
('source', 'target'))
# Filter sequences that are too long
stream = Filter(stream,
predicate=_too_long(seq_len=seq_len))
# Replace out of vocabulary tokens with unk token
stream = Mapping(stream,
_oov_to_unk(src_vocab_size=src_vocab_size,
trg_vocab_size=trg_vocab_size,
unk_id=unk_id))
# Build a batched version of stream to read k batches ahead
stream = Batch(stream,
iteration_scheme=ConstantScheme(
batch_size*sort_k_batches))
# Sort all samples in the read-ahead batch
stream = Mapping(stream, SortMapping(_length))
# Convert it into a stream again
stream = Unpack(stream)
# Construct batches from the stream with specified batch size
stream = Batch(
stream, iteration_scheme=ConstantScheme(batch_size))
# Pad sequences that are short
masked_stream = PaddingWithEOS(
stream, [src_vocab_size - 1, trg_vocab_size - 1])
return masked_stream
def get_dev_stream(val_set=None, src_vocab=None, src_vocab_size=30000,
unk_id=1, **kwargs):
"""Setup development set stream if necessary."""
dev_stream = None
if val_set is not None and src_vocab is not None:
src_vocab = _ensure_special_tokens(
src_vocab if isinstance(src_vocab, dict) else
cPickle.load(open(src_vocab)),
bos_idx=0, eos_idx=src_vocab_size - 1, unk_idx=unk_id)
dev_dataset = TextFile([val_set], src_vocab, None)
dev_stream = DataStream(dev_dataset)
return dev_stream