@@ -14,11 +14,11 @@ Our reproduced model performance on ImageNet-1K is reported as follows.
14
14
15
15
| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
16
16
| -----------------| -----------| -------| -------| ------------| ------------------------------------------------------------------------------------------| ----------------------------------------------------------------------------------|
17
- | rexnet_x09 | D910x8-G | 77.07 | 93.41 | 4.13 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x09 .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet0.9_acc77.07_bs64_8p.ckpt ) |
18
- | rexnet_x10 | D910x8-G | 77.38 | 93.60 | 4.84 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x10 .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet1.0_acc77.4_bs64_8p.ckpt ) |
19
- | rexnet_x13 | D910x8-G | 79.06 | 94.28 | 7.61 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x13 .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet1.3_acc79.06_bs64_8p.ckpt ) |
20
- | rexnet_x15 | D910x8-G | 79.94 | 94.74 | 9.79 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x15 .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet1.5_acc79.94_bs64_8p.ckpt ) |
21
- | rexnet_x20 | D910x8-G | 80.6 | 94.99 | 16.45 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x20 .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet2.0_acc80.6_bs64_8p.ckpt ) |
17
+ | rexnet_x09 | D910x8-G | 77.07 | 93.41 | 4.13 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x09_ascend .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet0.9_acc77.07_bs64_8p.ckpt ) |
18
+ | rexnet_x10 | D910x8-G | 77.38 | 93.60 | 4.84 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x10_ascend .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet1.0_acc77.4_bs64_8p.ckpt ) |
19
+ | rexnet_x13 | D910x8-G | 79.06 | 94.28 | 7.61 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x13_ascend .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet1.3_acc79.06_bs64_8p.ckpt ) |
20
+ | rexnet_x15 | D910x8-G | 79.94 | 94.74 | 9.79 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x15_ascend .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet1.5_acc79.94_bs64_8p.ckpt ) |
21
+ | rexnet_x20 | D910x8-G | 80.64 | 94.99 | 16.45 | [ yaml] ( https://github.com/mindspore-lab/mindcv/blob/main/configs/rexnet/rexnet_x20_ascend .yaml ) | [ weights] ( https://download.mindspore.cn/toolkits/mindcv/rexnet/rexnet2.0_acc80.6_bs64_8p.ckpt ) |
22
22
23
23
</div >
24
24
@@ -45,7 +45,7 @@ It is easy to reproduce the reported results with the pre-defined training recip
45
45
46
46
``` shell
47
47
# distributed training on multiple GPU/Ascend devices
48
- mpirun -n 8 python train.py --config configs/rexnet/rexnet_x09 .yaml --data_dir /path/to/imagenet
48
+ mpirun -n 8 python train.py --config configs/rexnet/rexnet_x09_ascend .yaml --data_dir /path/to/imagenet
49
49
```
50
50
51
51
> If the script is executed by the root user, the ` --allow-run-as-root ` parameter must be added to ` mpirun ` .
@@ -62,15 +62,15 @@ If you want to train or finetune the model on a smaller dataset without distribu
62
62
63
63
``` shell
64
64
# standalone training on a CPU/GPU/Ascend device
65
- python train.py --config configs/rexnet/rexnet_x09 .yaml --data_dir /path/to/dataset --distribute False
65
+ python train.py --config configs/rexnet/rexnet_x09_ascend .yaml --data_dir /path/to/dataset --distribute False
66
66
```
67
67
68
68
### Validation
69
69
70
70
To validate the accuracy of the trained model, you can use ` validate.py ` and parse the checkpoint path with ` --ckpt_path ` .
71
71
72
72
``` shell
73
- python validate.py -c configs/rexnet/rexnet_x09 .yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt
73
+ python validate.py -c configs/rexnet/rexnet_x09_ascend .yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt
74
74
```
75
75
76
76
### Deployment
0 commit comments