Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

微调任务 使用mindnlp-0.4.1加载模型报错 数据类型不支持 #1820

Open
Andy115951 opened this issue Nov 15, 2024 · 0 comments
Open
Labels
bug Something isn't working

Comments

@Andy115951
Copy link

Describe the bug/ 问题描述 (Mandatory / 必填)
A clear and concise description of what the bug is.
使用mindnlp0.4.1加载模型报错

RuntimeError: Unsupported data type!
----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------
mindspore/ccsrc/pybind_api/ir/tensor_py.cc:361 MakeTensorOfNumpy
  • Hardware Environment(Ascend/GPU/CPU) / 硬件环境:

Please delete the backend not involved / 请删除不涉及的后端:
/device ascend/GPU/CPU/kirin/等其他芯片

Ascend: 1*ascend-snt9b1|ARM: 24核 192GB

  • Software Environment / 软件环境 (Mandatory / 必填):
    -- MindSpore version (e.g., 1.7.0.Bxxx) :
    -- Python version (e.g., Python 3.7.5) :
    -- OS platform and distribution (e.g., Linux Ubuntu 16.04):
    -- GCC/Compiler version (if compiled from source):

Python 3.9.10
mindspore 2.3.1
mindnlp 0.4.1

  • Excute Mode / 执行模式 (Mandatory / 必填)(PyNative/Graph):

Please delete the mode not involved / 请删除不涉及的模式:
/mode pynative
/mode graph

PyNative

To Reproduce / 重现步骤 (Mandatory / 必填)
Steps to reproduce the behavior:

  1. Go to '...'
  2. Click on '....'
  3. Scroll down to '....'
  4. See error

!export HF_ENDPOINT=http://hf.co
import os
import mindspore
from mindnlp.transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from mindnlp.peft import get_peft_config, get_peft_model, get_peft_model_state_dict, PromptTuningConfig, TaskType
from mindnlp.dataset import load_dataset, BaseMapFunction
from mindspore.dataset import GeneratorDataset
from mindnlp.core import ops, optim
import numpy as np
from threading import Lock
from mindnlp.transformers.optimization import get_linear_schedule_with_warmup
from tqdm import tqdm
from mindnlp.peft.tuners.prompt_tuning.config import PromptTuningInit

os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ['HF_ENDPOINT'] = 'http://hf-mirror.com'
if "RANK_TABLE_FILE" in os.environ:
    del os.environ["RANK_TABLE_FILE"]

# model_name_or_path = "t5-large"
# tokenizer_name_or_path = "t5-large"
model_name_or_path = "google-t5/t5-large"
tokenizer_name_or_path = "google-t5/t5-large"
checkpoint_name = "financial_sentiment_analysis_prompt_tuning_v1.ckpt"
text_column = "sentence"
label_column = "text_label"
max_length = 128
lr = 1e-3
num_epochs = 8
batch_size = 8
# creating model
peft_config = PromptTuningConfig(
    task_type=TaskType.SEQ_2_SEQ_LM,
    prompt_tuning_init=PromptTuningInit.TEXT,
    num_virtual_tokens=20,
    prompt_tuning_init_text="What is the sentiment of this article?\n",
    inference_mode=False,
    tokenizer_name_or_path=model_name_or_path,
)

model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()

Expected behavior / 预期结果 (Mandatory / 必填)
A clear and concise description of what you expected to happen.
torch输出结果

PeftModelForSeq2SeqLM(
  (base_model): T5ForConditionalGeneration(
    (shared): Embedding(32128, 1024)
    (encoder): T5Stack(
      (embed_tokens): Embedding(32128, 1024)
      (block): ModuleList(
        (0): T5Block(
          (layer): ModuleList(
            (0): T5LayerSelfAttention(
              (SelfAttention): T5Attention(
                (q): Linear(in_features=1024, out_features=1024, bias=False)
                (k): Linear(in_features=1024, out_features=1024, bias=False)
                (v): Linear(in_features=1024, out_features=1024, bias=False)
                (o): Linear(in_features=1024, out_features=1024, bias=False)
                (relative_attention_bias): Embedding(32, 16)
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
            (1): T5LayerFF(
              (DenseReluDense): T5DenseActDense(
                (wi): Linear(in_features=1024, out_features=4096, bias=False)
                (wo): Linear(in_features=4096, out_features=1024, bias=False)
                (dropout): Dropout(p=0.1, inplace=False)
                (act): ReLU()
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
        (1-23): 23 x T5Block(
          (layer): ModuleList(
            (0): T5LayerSelfAttention(
              (SelfAttention): T5Attention(
                (q): Linear(in_features=1024, out_features=1024, bias=False)
                (k): Linear(in_features=1024, out_features=1024, bias=False)
                (v): Linear(in_features=1024, out_features=1024, bias=False)
                (o): Linear(in_features=1024, out_features=1024, bias=False)
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
            (1): T5LayerFF(
              (DenseReluDense): T5DenseActDense(
                (wi): Linear(in_features=1024, out_features=4096, bias=False)
                (wo): Linear(in_features=4096, out_features=1024, bias=False)
                (dropout): Dropout(p=0.1, inplace=False)
                (act): ReLU()
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (final_layer_norm): T5LayerNorm()
      (dropout): Dropout(p=0.1, inplace=False)
    )
    (decoder): T5Stack(
      (embed_tokens): Embedding(32128, 1024)
      (block): ModuleList(
        (0): T5Block(
          (layer): ModuleList(
            (0): T5LayerSelfAttention(
              (SelfAttention): T5Attention(
                (q): Linear(in_features=1024, out_features=1024, bias=False)
                (k): Linear(in_features=1024, out_features=1024, bias=False)
                (v): Linear(in_features=1024, out_features=1024, bias=False)
                (o): Linear(in_features=1024, out_features=1024, bias=False)
                (relative_attention_bias): Embedding(32, 16)
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
            (1): T5LayerCrossAttention(
              (EncDecAttention): T5Attention(
                (q): Linear(in_features=1024, out_features=1024, bias=False)
                (k): Linear(in_features=1024, out_features=1024, bias=False)
                (v): Linear(in_features=1024, out_features=1024, bias=False)
                (o): Linear(in_features=1024, out_features=1024, bias=False)
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
            (2): T5LayerFF(
              (DenseReluDense): T5DenseActDense(
                (wi): Linear(in_features=1024, out_features=4096, bias=False)
                (wo): Linear(in_features=4096, out_features=1024, bias=False)
                (dropout): Dropout(p=0.1, inplace=False)
                (act): ReLU()
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
        (1-23): 23 x T5Block(
          (layer): ModuleList(
            (0): T5LayerSelfAttention(
              (SelfAttention): T5Attention(
                (q): Linear(in_features=1024, out_features=1024, bias=False)
                (k): Linear(in_features=1024, out_features=1024, bias=False)
                (v): Linear(in_features=1024, out_features=1024, bias=False)
                (o): Linear(in_features=1024, out_features=1024, bias=False)
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
            (1): T5LayerCrossAttention(
              (EncDecAttention): T5Attention(
                (q): Linear(in_features=1024, out_features=1024, bias=False)
                (k): Linear(in_features=1024, out_features=1024, bias=False)
                (v): Linear(in_features=1024, out_features=1024, bias=False)
                (o): Linear(in_features=1024, out_features=1024, bias=False)
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
            (2): T5LayerFF(
              (DenseReluDense): T5DenseActDense(
                (wi): Linear(in_features=1024, out_features=4096, bias=False)
                (wo): Linear(in_features=4096, out_features=1024, bias=False)
                (dropout): Dropout(p=0.1, inplace=False)
                (act): ReLU()
              )
              (layer_norm): T5LayerNorm()
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (final_layer_norm): T5LayerNorm()
      (dropout): Dropout(p=0.1, inplace=False)
    )
    (lm_head): Linear(in_features=1024, out_features=32128, bias=False)
  )
  (prompt_encoder): ModuleDict(
    (default): PromptEmbedding(
      (embedding): Embedding(40, 1024)
    )
  )
  (word_embeddings): Embedding(32128, 1024)
)

Screenshots/ 日志 / 截图 (Mandatory / 必填)
If applicable, add screenshots to help explain your problem.

image
image

Additional context / 备注 (Optional / 选填)
Add any other context about the problem here.

@Andy115951 Andy115951 added the bug Something isn't working label Nov 15, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant