-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmnasnet_models.py
309 lines (262 loc) · 10.2 KB
/
mnasnet_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Predefined MnasNet models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import tensorflow as tf
import mnasnet_model
class MnasNetDecoder(object):
"""A class of MnasNet decoder to get model configuration."""
def _decode_block_string(self, block_string):
"""Gets a MNasNet block through a string notation of arguments.
E.g. r2_k3_s2_e1_i32_o16_se0.25_noskip: r - number of repeat blocks,
k - kernel size, s - strides (1-9), e - expansion ratio, i - input filters,
o - output filters, se - squeeze/excitation ratio
Args:
block_string: a string, a string representation of block arguments.
Returns:
A BlockArgs instance.
Raises:
ValueError: if the strides option is not correctly specified.
"""
assert isinstance(block_string, str)
ops = block_string.split('_')
options = {}
for op in ops:
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
if 's' not in options or len(options['s']) != 2:
raise ValueError('Strides options should be a pair of integers.')
return mnasnet_model.BlockArgs(
kernel_size=int(options['k']),
num_repeat=int(options['r']),
input_filters=int(options['i']),
output_filters=int(options['o']),
expand_ratio=int(options['e']),
id_skip=('noskip' not in block_string),
se_ratio=float(options['se']) if 'se' in options else None,
strides=[int(options['s'][0]), int(options['s'][1])])
def _encode_block_string(self, block):
"""Encodes a MnasNet block to a string."""
args = [
'r%d' % block.num_repeat,
'k%d' % block.kernel_size,
's%d%d' % (block.strides[0], block.strides[1]),
'e%s' % block.expand_ratio,
'i%d' % block.input_filters,
'o%d' % block.output_filters
]
if (block.se_ratio is not None and block.se_ratio > 0 and
block.se_ratio <= 1):
args.append('se%s' % block.se_ratio)
if block.id_skip is False:
args.append('noskip')
return '_'.join(args)
def decode(self, string_list):
"""Decodes a list of string notations to specify blocks inside the network.
Args:
string_list: a list of strings, each string is a notation of MnasNet
block.
Returns:
A list of namedtuples to represent MnasNet blocks arguments.
"""
assert isinstance(string_list, list)
blocks_args = []
for block_string in string_list:
blocks_args.append(self._decode_block_string(block_string))
return blocks_args
def encode(self, blocks_args):
"""Encodes a list of MnasNet Blocks to a list of strings.
Args:
blocks_args: A list of namedtuples to represent MnasNet blocks arguments.
Returns:
a list of strings, each string is a notation of MnasNet block.
"""
block_strings = []
for block in blocks_args:
block_strings.append(self._encode_block_string(block))
return block_strings
def mnasnet_b1(depth_multiplier=None):
"""Creates a mnasnet-b1 model.
Args:
depth_multiplier: multiplier to number of filters per layer.
Returns:
blocks_args: a list of BlocksArgs for internal MnasNet blocks.
global_params: GlobalParams, global parameters for the model.
"""
blocks_args = [
'r1_k3_s11_e1_i32_o16_noskip', 'r3_k3_s22_e3_i16_o24',
'r3_k5_s22_e3_i24_o40', 'r3_k5_s22_e6_i40_o80', 'r2_k3_s11_e6_i80_o96',
'r4_k5_s22_e6_i96_o192', 'r1_k3_s11_e6_i192_o320_noskip'
]
decoder = MnasNetDecoder()
global_params = mnasnet_model.GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=0.2,
data_format='channels_last',
num_classes=1000,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
stem_size=32,
use_keras=True)
return decoder.decode(blocks_args), global_params
def mnasnet_a1(depth_multiplier=None):
"""Creates a mnasnet-a1 model.
Args:
depth_multiplier: multiplier to number of filters per layer.
Returns:
blocks_args: a list of BlocksArgs for internal MnasNet blocks.
global_params: GlobalParams, global parameters for the model.
"""
blocks_args = [
'r1_k3_s11_e1_i32_o16_noskip', 'r2_k3_s22_e6_i16_o24',
'r3_k5_s22_e3_i24_o40_se0.25', 'r4_k3_s22_e6_i40_o80',
'r2_k3_s11_e6_i80_o112_se0.25', 'r3_k5_s22_e6_i112_o160_se0.25',
'r1_k3_s11_e6_i160_o320'
]
global_params = mnasnet_model.GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=0.2,
data_format='channels_last',
num_classes=1000,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
stem_size=32,
use_keras=True)
decoder = MnasNetDecoder()
return decoder.decode(blocks_args), global_params
def mnasnet_small(depth_multiplier=None):
"""Creates a mnasnet-a1 model.
Args:
depth_multiplier: multiplier to number of filters per layer.
Returns:
blocks_args: a list of BlocksArgs for internal MnasNet blocks.
global_params: GlobalParams, global parameters for the model.
"""
blocks_args = [
'r1_k3_s11_e1_i16_o8', 'r1_k3_s22_e3_i8_o16',
'r2_k3_s22_e6_i16_o16', 'r4_k5_s22_e6_i16_o32_se0.25',
'r3_k3_s11_e6_i32_o32_se0.25', 'r3_k5_s22_e6_i32_o88_se0.25',
'r1_k3_s11_e6_i88_o144'
]
global_params = mnasnet_model.GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=0,
data_format='channels_last',
num_classes=1000,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
stem_size=8,
use_keras=True)
decoder = MnasNetDecoder()
return decoder.decode(blocks_args), global_params
def mnasnet_d1(depth_multiplier=None):
"""Creates a jointly searched mnasnet backbone for mnas-fpn.
Args:
depth_multiplier: multiplier to number of filters per layer.
Returns:
blocks_args: a list of BlocksArgs for internal MnasNet blocks.
global_params: GlobalParams, global parameters for the model.
"""
blocks_args = [
'r1_k3_s11_e9_i32_o24', 'r3_k3_s22_e9_i24_o36',
'r5_k3_s22_e9_i36_o48', 'r4_k5_s22_e9_i48_o96',
'r5_k7_s11_e3_i96_o96', 'r3_k3_s22_e9_i96_o80',
'r1_k7_s11_e6_i80_o320_noskip'
]
global_params = mnasnet_model.GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=0.2,
data_format='channels_last',
num_classes=1000,
depth_multiplier=depth_multiplier,
depth_divisor=8,
min_depth=None,
stem_size=32,
use_keras=False)
decoder = MnasNetDecoder()
return decoder.decode(blocks_args), global_params
def get_model_params(model_name, override_params):
"""Get the block args and global params for a given model."""
if model_name == 'mnasnet-a1':
blocks_args, global_params = mnasnet_a1()
elif model_name == 'mnasnet-b1':
blocks_args, global_params = mnasnet_b1()
elif model_name == 'mnasnet-small':
blocks_args, global_params = mnasnet_small()
elif model_name == 'mnasnet-d1':
blocks_args, global_params = mnasnet_d1()
else:
raise NotImplementedError('model name is not pre-defined: %s' % model_name)
if override_params:
# ValueError will be raised here if override_params has fields not included
# in global_params.
global_params = global_params._replace(**override_params)
return blocks_args, global_params
def build_mnasnet_model(images, model_name, training, override_params=None):
"""A helper functiion to create a MnasNet model and return predicted logits.
Args:
images: input images tensor.
model_name: string, the model name of a pre-defined MnasNet.
training: boolean, whether the model is constructed for training.
override_params: A dictionary of params for overriding. Fields must exist in
mnasnet_model.GlobalParams.
Returns:
logits: the logits tensor of classes.
endpoints: the endpoints for each layer.
Raises:
When model_name specified an undefined model, raises NotImplementedError.
When override_params has invalid fields, raises ValueError.
"""
assert isinstance(images, tf.Tensor)
blocks_args, global_params = get_model_params(model_name, override_params)
with tf.variable_scope(model_name):
model = mnasnet_model.MnasNetModel(blocks_args, global_params)
logits = model(images, training=training)
logits = tf.identity(logits, 'logits')
return logits, model.endpoints
def build_mnasnet_base(images, model_name, training, override_params=None):
"""A helper functiion to create a MnasNet base model and return global_pool.
Args:
images: input images tensor.
model_name: string, the model name of a pre-defined MnasNet.
training: boolean, whether the model is constructed for training.
override_params: A dictionary of params for overriding. Fields must exist in
mnasnet_model.GlobalParams.
Returns:
features: global pool features.
endpoints: the endpoints for each layer.
Raises:
When model_name specified an undefined model, raises NotImplementedError.
When override_params has invalid fields, raises ValueError.
"""
assert isinstance(images, tf.Tensor)
blocks_args, global_params = get_model_params(model_name, override_params)
with tf.variable_scope(model_name):
model = mnasnet_model.MnasNetModel(blocks_args, global_params)
features = model(images, training=training, features_only=True)
features = tf.identity(features, 'global_pool')
return features, model.endpoints