-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsid_train.py
300 lines (253 loc) · 15.6 KB
/
sid_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright (c) 2024, Mingyuan Zhou. All rights reserved.
#
# This work is licensed under APACHE LICENSE, VERSION 2.0
# You should have received a copy of the license along with this
# work. If not, see https://www.apache.org/licenses/LICENSE-2.0.txt
"""Distill pretraind diffusion-based generative model using the techniques described in the
paper "Score identity Distillation: Exponentially Fast Distillation of
Pretrained Diffusion Models for One-Step Generation"."""
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import socket
import re
import json
import click
import torch
import dnnlib
from torch_utils import distributed as dist
from training import sid_training_loop as training_loop
import warnings
warnings.filterwarnings('ignore', 'Grad strides do not match bucket view strides') # False warning printed by PyTorch 1.12.
#----------------------------------------------------------------------------
# Parse a comma separated list of numbers or ranges and return a list of ints.
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10]
def parse_int_list(s):
if isinstance(s, list): return s
ranges = []
range_re = re.compile(r'^(\d+)-(\d+)$')
for p in s.split(','):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
else:
ranges.append(int(p))
return ranges
class CommaSeparatedList(click.ParamType):
name = 'list'
def convert(self, value, param, ctx):
_ = param, ctx
if value is None or value.lower() == 'none' or value == '':
return []
return value.split(',')
#----------------------------------------------------------------------------
@click.command()
# Main options.gpu
@click.option('--outdir', help='Where to save the results', metavar='DIR', type=str, required=False)
@click.option('--data', help='Path to the dataset', metavar='ZIP|DIR', type=str, required=True)
@click.option('--data_stat', help='Path to the dataset stats', metavar='ZIP|DIR', type=str, default=None)
@click.option('--cond', help='Train class-conditional model', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--arch', help='Network architecture', metavar='ddpmpp|ncsnpp|adm', type=click.Choice(['ddpmpp', 'ncsnpp', 'adm']), default='ddpmpp', show_default=True)
@click.option('--precond', help='Preconditioning & loss function', metavar='vp|ve|edm', type=click.Choice(['vp', 've', 'edm']), default='edm', show_default=True)
# Hyperparameters.
@click.option('--duration', help='Training duration', metavar='MIMG', type=click.FloatRange(min=0, min_open=True), default=200, show_default=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), default=512, show_default=True)
@click.option('--batch-gpu', help='Limit batch size per GPU', metavar='INT', type=click.IntRange(min=1))
@click.option('--cbase', help='Channel multiplier [default: varies]', metavar='INT', type=int)
@click.option('--cres', help='Channels per resolution [default: varies]', metavar='LIST', type=parse_int_list)
@click.option('--ema', help='EMA half-life', metavar='MIMG', type=click.FloatRange(min=0), default=0.5, show_default=True)
@click.option('--dropout', help='Dropout probability', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.13, show_default=True)
@click.option('--augment', help='Augment probability', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.12, show_default=True)
@click.option('--xflip', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True)
# Performance-related.
@click.option('--bench', help='Enable cuDNN benchmarking', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--cache', help='Cache dataset in CPU memory', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=1, show_default=True)
# I/O-related.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--nosubdir', help='Do not create a subdirectory for results', is_flag=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--dump', help='How often to dump state', metavar='TICKS', type=click.IntRange(min=1), default=200, show_default=True)
@click.option('--seed', help='Random seed [default: random]', metavar='INT', type=int)
@click.option('--transfer', help='Transfer learning from network pickle', metavar='PKL|URL', type=str)
@click.option('--resume', help='Resume from previous training state', metavar='PT', type=str)
@click.option('-n', '--dry-run', help='Print training options and exit', is_flag=True)
@click.option('--metrics', help='Comma-separated list or "none" [default: fid50k_full]', type=CommaSeparatedList())
@click.option('--edm_model', help='edm_model', type=str)
# Parameters for SiD
@click.option('--init_sigma', help='Noise standard deviation that is fixed during distillation and generation', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=2.5, show_default=True)
@click.option('--fp16', help='Enable mixed-precision training', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--ls', help='Loss scaling', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=1, show_default=True)
@click.option('--lsg', help='Loss scaling G', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=100, show_default=True)
@click.option('--alpha', help='L2-alpha*L1', metavar='FLOAT', type=click.FloatRange(min=-1000, min_open=True), default=1.2, show_default=True)
@click.option('--tmax', help='the reverse sampling starting step corresoinding to the largest allowed noise level, in [0,1000]', metavar='INT', type=click.IntRange(min=0), default=800, show_default=True)
@click.option('--lr', help='Learning rate of fake score estimation network', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=1e-5, show_default=True)
@click.option('--glr', help='Learning rate of fake data generator', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=1e-5, show_default=True)
@click.option('--g_beta1', help='beta_1 of the Adam optimizer for generator', metavar='FLOAT', type=click.FloatRange(min=0, min_open=False), default=0, show_default=True)
def main(**kwargs):
"""Distill pretraind diffusion-based generative model using the techniques described in the
paper "Score identity Distillation: Exponentially Fast Distillation of
Pretrained Diffusion Models for One-Step Generation".
Examples:
\b
# Distill EDM model for CIFAR-10 unconditional using 4 GPUs
torchrun --standalone --nproc_per_node=4 sid_train.py \
--alpha 1.2 \
--cond 0 \
--tmax 800 \
--init_sigma 2.5 \
--batch 256 \
--batch-gpu 16 \
--outdir 'image_experiment/sid-train-runs/cifar10' \
--data '/data/datasets/cifar10-32x32.zip' \
--arch ddpmpp \
--batch 256 \
--edm_model cifar10-uncond \
--metrics fid50k_full,is50k \
--tick 10 \
--snap 50 \
--dump 500 \
--lr 1e-5 \
--glr 1e-5 \
--fp16 0 \
--ls 1 \
--lsg 100 \
--duration 500
"""
opts = dnnlib.EasyDict(kwargs)
torch.multiprocessing.set_start_method('spawn')
dist.init()
# Initialize config dict.
c = dnnlib.EasyDict()
c.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=opts.data, use_labels=opts.cond, xflip=opts.xflip, cache=opts.cache)
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, num_workers=opts.workers, prefetch_factor=2)
c.network_kwargs = dnnlib.EasyDict()
c.loss_kwargs = dnnlib.EasyDict()
c.fake_score_optimizer_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', lr=opts.lr, betas=[0.0, 0.999], eps = 1e-8 if not opts.fp16 else 1e-6)
c.g_optimizer_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', lr=opts.glr, betas=[opts.g_beta1, 0.999], eps = 1e-8 if not opts.fp16 else 1e-6)
c.init_sigma = opts.init_sigma
# Validate dataset options.
try:
dataset_obj = dnnlib.util.construct_class_by_name(**c.dataset_kwargs)
dataset_name = dataset_obj.name
c.dataset_kwargs.resolution = dataset_obj.resolution # be explicit about dataset resolution
c.dataset_kwargs.max_size = len(dataset_obj) # be explicit about dataset size
if opts.cond and not dataset_obj.has_labels:
raise click.ClickException('--cond=True requires labels specified in dataset.json')
del dataset_obj # conserve memory
except IOError as err:
raise click.ClickException(f'--data: {err}')
# Network architecture.
if opts.arch == 'ddpmpp':
c.network_kwargs.update(model_type='SongUNet', embedding_type='positional', encoder_type='standard', decoder_type='standard')
c.network_kwargs.update(channel_mult_noise=1, resample_filter=[1,1], model_channels=128, channel_mult=[2,2,2])
elif opts.arch == 'ncsnpp':
c.network_kwargs.update(model_type='SongUNet', embedding_type='fourier', encoder_type='residual', decoder_type='standard')
c.network_kwargs.update(channel_mult_noise=2, resample_filter=[1,3,3,1], model_channels=128, channel_mult=[2,2,2])
else:
assert opts.arch == 'adm'
c.network_kwargs.update(model_type='DhariwalUNet', model_channels=192, channel_mult=[1,2,3,4])
# Preconditioning & loss function.
assert opts.precond == 'edm'
#The current SiD code only accepted pretrained edm checkpoint, needs to modify accordingly for the checkpoints of other types of diffusion models
c.network_kwargs.class_name = 'training.networks.EDMPrecond'
c.loss_kwargs.class_name = 'training.sid_loss.SID_EDMLoss'
c.metrics = opts.metrics
# Network options.
if opts.cbase is not None:
c.network_kwargs.model_channels = opts.cbase
if opts.cres is not None:
c.network_kwargs.channel_mult = opts.cres
if opts.augment:
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', p=opts.augment)
c.augment_kwargs.update(xflip=1e8, yflip=1, scale=1, rotate_frac=1, aniso=1, translate_frac=1)
c.network_kwargs.augment_dim = 9
c.network_kwargs.update(dropout=opts.dropout, use_fp16=opts.fp16)
# Training options.
c.total_kimg = max(int(opts.duration * 1000), 1)
c.ema_halflife_kimg = int(opts.ema * 1000)
c.update(batch_size=opts.batch, batch_gpu=opts.batch_gpu)
c.update(loss_scaling=opts.ls, cudnn_benchmark=opts.bench)
c.update(kimg_per_tick=opts.tick, snapshot_ticks=opts.snap, state_dump_ticks=opts.dump)
c.update(loss_scaling_G=opts.lsg, cudnn_benchmark=opts.bench)
c.alpha = opts.alpha
c.tmax = opts.tmax
c.data_stat=opts.data_stat
# Random seed.
if opts.seed is not None:
c.seed = opts.seed
else:
seed = torch.randint(1 << 31, size=[], device=torch.device('cuda'))
torch.distributed.broadcast(seed, src=0)
c.seed = int(seed)
resume_urls = {
'cifar10-uncond': 'https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-vp.pkl',
'cifar10-cond': 'https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-cond-vp.pkl',
'ffhq64': 'https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-ffhq-64x64-uncond-vp.pkl',
'afhq64-v2': 'https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-afhqv2-64x64-uncond-vp.pkl',
'imagenet64-cond': 'https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-imagenet-64x64-cond-adm.pkl'
}
if opts.edm_model in resume_urls:
c.resume_pkl = resume_urls[opts.edm_model]
else:
c.resume_pkl = opts.edm_model
if opts.resume is not None:
c.resume_training = opts.resume
match = re.fullmatch(r'training-state-(\d+).pt', os.path.basename(opts.resume))
if not match or not os.path.isfile(opts.resume):
raise click.ClickException('--resume must point to training-state-*.pt from a previous training run')
c.resume_kimg = int(match.group(1))
# Description string.
cond_str = 'cond' if c.dataset_kwargs.use_labels else 'uncond'
dtype_str = 'fp16' if c.network_kwargs.use_fp16 else 'fp32'
desc = f'{dataset_name:s}-{cond_str:s}-{opts.arch:s}-{opts.precond:s}glr{opts.glr}-lr{opts.lr}-initsigma{opts.init_sigma}-gpus{dist.get_world_size():d}-alpha{c.alpha}-batch{c.batch_size:d}-tmax{c.tmax:d}-{dtype_str:s}'
if opts.desc is not None:
desc += f'-{opts.desc}'
if dist.get_rank() != 0:
c.run_dir = None
elif opts.nosubdir:
c.run_dir = opts.outdir
else:
prev_run_dirs = []
if os.path.isdir(opts.outdir):
prev_run_dirs = [x for x in os.listdir(opts.outdir) if os.path.isdir(os.path.join(opts.outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(opts.outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
dist.print0()
dist.print0('Training options:')
dist.print0(json.dumps(c, indent=2))
dist.print0()
dist.print0(f'Output directory: {c.run_dir}')
dist.print0(f'Dataset path: {c.dataset_kwargs.path}')
dist.print0(f'Class-conditional: {c.dataset_kwargs.use_labels}')
dist.print0(f'Network architecture: {opts.arch}')
dist.print0(f'Preconditioning & loss: {opts.precond}')
dist.print0(f'Number of GPUs: {dist.get_world_size()}')
dist.print0(f'Batch size: {c.batch_size}')
dist.print0(f'Mixed-precision: {c.network_kwargs.use_fp16}')
dist.print0(f'alpha: {c.alpha}')
dist.print0(f'tmax: {c.tmax}')
dist.print0(f'precision: {dtype_str}')
dist.print0()
# Dry run?
if opts.dry_run:
dist.print0('Dry run; exiting.')
return
# Create output directory.
dist.print0('Creating output directory...')
if dist.get_rank() == 0:
os.makedirs(c.run_dir, exist_ok=True)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Train.
training_loop.training_loop(**c)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------