forked from Ahmet-Dedeler/ai-llm-comparison
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformModels.js
198 lines (180 loc) · 6.65 KB
/
transformModels.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
const https = require('https');
const fs = require('fs');
const path = require('path');
const fromExponential = require('from-exponential');
// URL of the JSON file in LiteLLM's GitHub repository
const jsonUrl = 'https://raw.githubusercontent.com/BerriAI/litellm/refs/heads/main/model_prices_and_context_window.json';
// Function to fetch JSON data from the URL
const fetchJsonData = (url) => {
return new Promise((resolve, reject) => {
https.get(url, (res) => {
let data = '';
res.on('data', (chunk) => {
data += chunk;
});
res.on('end', () => {
resolve(JSON.parse(data));
});
res.on('error', (err) => {
reject(err);
});
});
});
};
// Define the structure of the aiModels object
const aiModels = {
chat: [],
embedding: [],
image_generation: [],
completion: [],
audio_transcription: [],
audio_speech: []
};
// Define the logo mapping
const providerLogos = {
openai: 'OpenAI',
'text-completion-openai': 'OpenAI',
azure: 'Azure',
azure_ai: 'Azure',
anthropic: 'Anthropic',
palm: 'Google',
'vertex_ai-chat-models': 'Google',
'vertex_ai-code-chat-models': 'Google',
'vertex_ai-language-models': 'Google',
'vertex_ai-anthropic_models': 'Google',
'vertex_ai-llama_models': 'Google',
'vertex_ai-mistral_models': 'Google',
'vertex_ai-ai21_models': 'Google',
'vertex_ai-vision-models': 'Google',
'vertex_ai-code-text-models': 'Google',
'vertex_ai-image-models': 'Google',
'vertex_ai-audio-models': 'Google',
'vertex_ai-embedding-models': 'Google',
'vertex_ai-text-models': 'Google',
deepseek: 'DeepSeek',
gemini: 'Google',
cohere_chat: 'Cohere',
cohere: 'Cohere',
replicate: 'Replicate',
bedrock: 'Amazon',
friendliai: 'FriendliAI',
openrouter: 'OpenRouter',
sagemaker: 'Amazon',
mistral: 'Mistral',
'text-completion-codestral': 'Mistral',
codestral: 'Mistral',
groq: 'Groq',
cerebras: 'Cerebras',
ollama: 'Ollama',
deepinfra: 'DeepInfra',
perplexity: 'Perplexity',
fireworks_ai: 'Fireworks AI',
anyscale: 'Anyscale',
cloudflare: 'Cloudflare',
databricks: 'Databricks',
ai21: 'AI21',
aleph_alpha: 'Aleph Alpha',
nlp_cloud: 'NLP Cloud',
voyage: 'Voyage'
};
// Function to map the mode to the correct category
const mapModeToCategory = (mode) => {
switch (mode) {
case 'chat':
return 'chat';
case 'embedding':
return 'embedding';
case 'image_generation':
return 'image_generation';
case 'completion':
return 'completion';
case 'audio_transcription':
return 'audio_transcription';
case 'audio_speech':
return 'audio_speech';
default:
return null;
}
};
// Function to format numbers to fixed-point notation using from-exponential
const formatNumber = (num) => {
return num !== undefined ? fromExponential(num) : null;
};
// Fetch and transform the models data
fetchJsonData(jsonUrl)
.then((modelsData) => {
Object.keys(modelsData).forEach((modelName) => {
const model = modelsData[modelName];
const category = mapModeToCategory(model.mode);
const provider = model.litellm_provider;
const logo = providerLogos[provider] ? `/logos/${providerLogos[provider].toLowerCase()}.svg` : '/placeholder.svg?height=30&width=30';
if (category) {
aiModels[category].push({
name: modelName,
provider: provider,
logo: logo,
sample_spec: {
max_tokens: model.max_tokens !== undefined ? model.max_tokens : null,
max_input_tokens: model.max_input_tokens !== undefined ? model.max_input_tokens : null,
max_output_tokens: model.max_output_tokens !== undefined ? model.max_output_tokens : null,
input_cost_per_token: formatNumber(model.input_cost_per_token),
output_cost_per_token: formatNumber(model.output_cost_per_token),
litellm_provider: provider,
mode: model.mode,
supports_function_calling: model.supports_function_calling || false,
supports_parallel_function_calling: model.supports_parallel_function_calling || false,
supports_vision: model.supports_vision || false,
source: model.source
}
});
}
});
// Define the parameterNames object
const parameterNames = `export const parameterNames: { [key: string]: string } = {
max_tokens: "Max Tokens",
max_input_tokens: "Max Input Tokens",
max_output_tokens: "Max Output Tokens",
input_cost_per_token: "Input Cost per Token",
output_cost_per_token: "Output Cost per Token",
litellm_provider: "Provider",
mode: "Mode",
supports_function_calling: "Supports Function Calling",
supports_parallel_function_calling: "Supports Parallel Function Calling",
supports_vision: "Supports Vision",
supports_system_messages: "Supports System Messages",
supports_tool_choice: "Supports Tool Choice",
supports_response_schema: "Supports Response Schema",
supports_assistant_prefill: "Supports Assistant Prefill",
tool_use_system_prompt_tokens: "Tool Use System Prompt Tokens",
input_cost_per_token_above_128k_tokens: "Input Cost per Token (>128k)",
output_cost_per_token_above_128k_tokens: "Output Cost per Token (>128k)",
cache_creation_input_token_cost: "Cache Creation Input Token Cost",
cache_read_input_token_cost: "Cache Read Input Token Cost",
output_vector_size: "Output Vector Size",
input_cost_per_pixel: "Input Cost per Pixel",
output_cost_per_pixel: "Output Cost per Pixel",
cost_per_image: "Cost per Image",
input_cost_per_second: "Input Cost per Second",
output_cost_per_second: "Output Cost per Second",
input_cost_per_character: "Input Cost per Character",
output_cost_per_character: "Output Cost per Character",
input_cost_per_image: "Input Cost per Image",
input_cost_per_video_per_second: "Input Cost per Video Second",
input_cost_per_request: "Input Cost per Request",
input_dbu_cost_per_token: "Input DBU Cost per Token",
output_dbu_cost_per_token: "Output DBU Cost per Token"
};`;
// Define the import statement
const importStatement = `import { AIModels } from '../types';`;
// Write the transformed data to a new TypeScript file
const outputPath = path.join(__dirname, 'app/utils/aiModels.ts');
const outputData = `${importStatement}
${parameterNames}
export const aiModels: AIModels = ${JSON.stringify(aiModels, null, 2)};
`;
fs.writeFileSync(outputPath, outputData);
console.log('Transformed data has been written to aiModels.ts');
})
.catch((err) => {
console.error('Error fetching or processing the JSON data:', err);
});