We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I'm trying to load the saved model . The model saves ok but when I try to load it with the code:
custom_objects={"BilinearUpsampling":BilinearUpsampling} keras.models.load_model(model_file, custom_objects=custom_objects)
It throws an error TypeError: ('Keyword argument not understood:', 'size')
TypeError Traceback (most recent call last) <ipython-input-2-919f7be2ba45> in <module>() ----> 1 predict() <ipython-input-1-657409a5c4ee> in predict(model_path, validation_file, labels, output_dir) 23 output_dir=config["prediction_dir"]): 24 tmp = BilinearUpsampling() ---> 25 model = load_old_model(model_path) 26 validation_file_opened = tables.open_file(validation_file) 27 n_samples = validation_file_opened.root.data.shape[0] ~/workspace/segmentation/2DSegNet/DeepLab/keras-deeplab-v3-plus/deeplabv3_plus_train.py in load_old_model(model_file) 240 pass 241 try: --> 242 return load_model(model_file, custom_objects=custom_objects) 243 except ValueError as error: 244 if "InstanceNormalization" in str(error): /usr/local/lib/python3.5/dist-packages/keras/models.py in load_model(filepath, custom_objects, compile) 268 raise ValueError('No model found in config file.') 269 model_config = json.loads(model_config.decode('utf-8')) --> 270 model = model_from_config(model_config, custom_objects=custom_objects) 271 272 # set weights /usr/local/lib/python3.5/dist-packages/keras/models.py in model_from_config(config, custom_objects) 345 'Maybe you meant to use ' 346 '`Sequential.from_config(config)`?') --> 347 return layer_module.deserialize(config, custom_objects=custom_objects) 348 349 /usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py in deserialize(config, custom_objects) 53 module_objects=globs, 54 custom_objects=custom_objects, ---> 55 printable_module_name='layer') /usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name) 142 return cls.from_config(config['config'], 143 custom_objects=dict(list(_GLOBAL_CUSTOM_OBJECTS.items()) + --> 144 list(custom_objects.items()))) 145 with CustomObjectScope(custom_objects): 146 return cls.from_config(config['config']) /usr/local/lib/python3.5/dist-packages/keras/engine/topology.py in from_config(cls, config, custom_objects) 2523 # First, we create all layers and enqueue nodes to be processed 2524 for layer_data in config['layers']: -> 2525 process_layer(layer_data) 2526 # Then we process nodes in order of layer depth. 2527 # Nodes that cannot yet be processed (if the inbound node /usr/local/lib/python3.5/dist-packages/keras/engine/topology.py in process_layer(layer_data) 2509 2510 layer = deserialize_layer(layer_data, -> 2511 custom_objects=custom_objects) 2512 created_layers[layer_name] = layer 2513 /usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py in deserialize(config, custom_objects) 53 module_objects=globs, 54 custom_objects=custom_objects, ---> 55 printable_module_name='layer') /usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name) 144 list(custom_objects.items()))) 145 with CustomObjectScope(custom_objects): --> 146 return cls.from_config(config['config']) 147 else: 148 # Then `cls` may be a function returning a class. /usr/local/lib/python3.5/dist-packages/keras/engine/topology.py in from_config(cls, config) 1269 A layer instance. 1270 """ -> 1271 return cls(**config) 1272 1273 def count_params(self): ~/workspace/segmentation/2DSegNet/DeepLab/keras-deeplab-v3-plus/deeplabv3_plus_model.py in __init__(self, upsampling, data_format, **kwargs) 12 self.upsampling = conv_utils.normalize_tuple(upsampling, 2, 'size') 13 self.input_spec = InputSpec(ndim=4) ---> 14 super(BilinearUpsampling, self).__init__(**kwargs) 15 16 def compute_output_shape(self, input_shape): /usr/local/lib/python3.5/dist-packages/keras/engine/topology.py in __init__(self, **kwargs) 291 for kwarg in kwargs: 292 if kwarg not in allowed_kwargs: --> 293 raise TypeError('Keyword argument not understood:', kwarg) 294 name = kwargs.get('name') 295 if not name: TypeError: ('Keyword argument not understood:', 'size')
The text was updated successfully, but these errors were encountered:
I met the same issue...
Sorry, something went wrong.
how 同do it
No branches or pull requests
I'm trying to load the saved model . The model saves ok but when I try to load it with the code:
It throws an error TypeError: ('Keyword argument not understood:', 'size')
The text was updated successfully, but these errors were encountered: