-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path1_compute_activations_statistics.py
97 lines (78 loc) · 3.75 KB
/
1_compute_activations_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from utils.stable_diffusion import load_sd_components, load_text_components
from rtpt import RTPT
import torch
from tqdm.auto import tqdm
import pandas as pd
import argparse
def main():
args = create_parser()
# load prompts
prompts = pd.read_csv(args.prompts, sep=';')
RTPT(args.user, 'Compute_Activations', len(prompts)).start()
# Load SD components
vae, unet, scheduler = load_sd_components(args.version)
tokenizer, text_encoder = load_text_components(args.version)
torch_device = "cuda"
vae.to(torch_device)
text_encoder.to(torch_device)
unet.to(torch_device)
value_layers = torch.nn.ModuleList()
for down_block in range(3):
for attention in range(2):
value_layers.append(unet.down_blocks[down_block].attentions[attention].transformer_blocks[0].attn2.to_v)
value_layers.append(unet.mid_block.attentions[0].transformer_blocks[0].attn2.to_v)
list_of_activations = [[] for _ in range(7)]
for prompt in tqdm(prompts.iterrows(), total=len(prompts)):
prompt = prompt[1]['Caption']
with torch.no_grad():
text_input = tokenizer([prompt],
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt")
text_embeddings = text_encoder(
text_input.input_ids.to(text_encoder.device))[0]
for idx, layer in enumerate(value_layers):
activations = layer.forward(text_embeddings)[0]
activations = activations.abs().mean(dim=0).unsqueeze(0).cpu()
list_of_activations[idx].append(activations)
if args.no_statistics:
result = []
for idx in range(len(value_layers)):
result.append(torch.cat(list_of_activations[idx], dim=0))
torch.save(result, args.output.replace('.pt', f'_no_statistics_calculated_{args.version.replace("-", "_")}.pt'))
return
mean_list = []
std_list = []
for idx in range(len(value_layers)):
mean = torch.cat(list_of_activations[idx], dim=0).mean(dim=0)
std = torch.cat(list_of_activations[idx], dim=0).std(dim=0)
mean_list.append(mean)
std_list.append(std)
torch.save((mean_list, std_list), args.output.replace('.pt', '') + '_' + args.version.replace("-", "_") + '.pt')
def create_parser():
parser = argparse.ArgumentParser(description='Calculating activation statistics')
parser.add_argument('--prompts', default='prompts/additional_laion_prompts.csv', type=str, help='The file from which the prompts are loaded to calculate the statistics (default: \'prompts/additional_laion_prompts.csv\').')
parser.add_argument('--output', default='statistics/statistics_additional_laion_prompts.pt', type=str, help='The file to which the activation statistics are written (default: \'statistics/statistics_additional_laion_prompts.pt\').')
parser.add_argument('-v',
'--version',
default='v1-4',
type=str,
dest="version",
help='Stable Diffusion version (default: "v1-4")')
parser.add_argument('-u',
'--user',
default='XX',
type=str,
dest="user",
help='name initials for RTPT (default: "XX")')
parser.add_argument(
'--no_statistics',
default=False,
action='store_true',
help='Do not calculate the statistics and instead just return the activations.'
)
args = parser.parse_args()
return args
if __name__ == "__main__":
main()