|
| 1 | +# pylint: disable=chained-comparison,line-too-long,missing-docstring, |
| 2 | +# pylint: disable=too-many-arguments,too-many-locals,unused-argument,unused-variable |
| 3 | +import json |
| 4 | +import queue |
| 5 | +import threading |
| 6 | +from typing import Any, Callable, Dict, Iterator, List, Literal, Optional, Union |
| 7 | + |
| 8 | +import tvm |
| 9 | + |
| 10 | +from mlc_llm.protocol import openai_api_protocol |
| 11 | +from mlc_llm.serve import engine_utils |
| 12 | +from mlc_llm.serve.engine_base import ( |
| 13 | + EngineConfig, |
| 14 | + SpeculativeMode, |
| 15 | + _infer_kv_cache_config, |
| 16 | + _parse_models, |
| 17 | + _process_model_args, |
| 18 | + detect_device, |
| 19 | +) |
| 20 | +from mlc_llm.tokenizer import Tokenizer |
| 21 | + |
| 22 | + |
| 23 | +# TODO(mlc-team): further minimize the JSONFFIEngine |
| 24 | +# construction to not depend on any config and directly pass in JSON |
| 25 | +# model defined generation config should be read from the JSONFFIEngine via Reload |
| 26 | +def create_model_defined_generation_config( |
| 27 | + temperature: float, top_p: float, frequency_penalty: float, presence_penalty: float |
| 28 | +) -> tvm.runtime.Object: |
| 29 | + return tvm.get_global_func("mlc.json_ffi.ModelDefinedGenerationConfig")( |
| 30 | + temperature, |
| 31 | + top_p, |
| 32 | + frequency_penalty, |
| 33 | + presence_penalty, |
| 34 | + ) |
| 35 | + |
| 36 | +# TODO(mlc-team): further minimize the JSONFFIEngine |
| 37 | +# Engine config should be passed as json str |
| 38 | +# and backend should have good default |
| 39 | +# only model and model_lib should be mandatory |
| 40 | +def create_json_ffi_engine_config( |
| 41 | + conv_template: str, model_generation_cfgs: Dict[str, tvm.runtime.Object] |
| 42 | +) -> tvm.runtime.Object: |
| 43 | + return tvm.get_global_func("mlc.json_ffi.JSONFFIEngineConfig")( |
| 44 | + conv_template, model_generation_cfgs |
| 45 | + ) |
| 46 | + |
| 47 | + |
| 48 | +class EngineState: |
| 49 | + sync_queue: queue.Queue |
| 50 | + |
| 51 | + def get_request_stream_callback(self) -> Callable[[List[str]], None]: |
| 52 | + # ChatCompletionStreamResponse |
| 53 | + |
| 54 | + def _callback(chat_completion_stream_responses_json_str: List[str]) -> None: |
| 55 | + self._sync_request_stream_callback(chat_completion_stream_responses_json_str) |
| 56 | + |
| 57 | + return _callback |
| 58 | + |
| 59 | + def _sync_request_stream_callback( |
| 60 | + self, chat_completion_stream_responses_json_str: List[str] |
| 61 | + ) -> None: |
| 62 | + # Put the delta outputs to the queue in the unblocking way. |
| 63 | + self.sync_queue.put_nowait(chat_completion_stream_responses_json_str) |
| 64 | + |
| 65 | + |
| 66 | +class JSONFFIEngine: |
| 67 | + def __init__( # pylint: disable=too-many-arguments,too-many-locals |
| 68 | + self, |
| 69 | + model: str, |
| 70 | + device: Union[str, tvm.runtime.Device] = "auto", |
| 71 | + *, |
| 72 | + model_lib_path: Optional[str] = None, |
| 73 | + mode: Literal["local", "interactive", "server"] = "local", |
| 74 | + additional_models: Optional[List[str]] = None, |
| 75 | + max_batch_size: Optional[int] = None, |
| 76 | + max_total_sequence_length: Optional[int] = None, |
| 77 | + max_history_size: Optional[int] = None, |
| 78 | + prefill_chunk_size: Optional[int] = None, |
| 79 | + speculative_mode: SpeculativeMode = SpeculativeMode.DISABLE, |
| 80 | + spec_draft_length: int = 4, |
| 81 | + gpu_memory_utilization: Optional[float] = None, |
| 82 | + ) -> None: |
| 83 | + # - Initialize model loading info. |
| 84 | + models = _parse_models(model, model_lib_path, additional_models) |
| 85 | + if isinstance(device, str): |
| 86 | + device = detect_device(device) |
| 87 | + assert isinstance(device, tvm.runtime.Device) |
| 88 | + ( |
| 89 | + model_args, |
| 90 | + model_config_paths, |
| 91 | + self.conv_template, |
| 92 | + ) = _process_model_args(models, device) |
| 93 | + |
| 94 | + # TODO(mlc-team) Remove the model config parsing, estimation below |
| 95 | + # in favor of a simple direct passing of parameters into backend. |
| 96 | + # JSONFFIEngine do not have to support automatic mode |
| 97 | + # |
| 98 | + # Instead, its config should default to interactive mode always |
| 99 | + # and allow overrides of parameters through json config via reload |
| 100 | + # |
| 101 | + # This is to simplify the logic of users of JSONFFI |
| 102 | + # since we won't have similar logics in android/iOS |
| 103 | + # |
| 104 | + # - Load the raw model config into dict |
| 105 | + self.model_config_dicts = [] |
| 106 | + for i, model_info in enumerate(models): |
| 107 | + model_info.model_lib_path = model_args[i][1] |
| 108 | + with open(model_config_paths[i], "r", encoding="utf-8") as file: |
| 109 | + self.model_config_dicts.append(json.load(file)) |
| 110 | + |
| 111 | + # - Decide the KV cache config based on mode and user input. |
| 112 | + ( |
| 113 | + max_batch_size, |
| 114 | + max_total_sequence_length, |
| 115 | + prefill_chunk_size, |
| 116 | + max_single_sequence_length, |
| 117 | + max_history_size, |
| 118 | + kv_state_kind, |
| 119 | + ) = _infer_kv_cache_config( |
| 120 | + mode, |
| 121 | + max_batch_size, |
| 122 | + max_total_sequence_length, |
| 123 | + prefill_chunk_size, |
| 124 | + max_history_size, |
| 125 | + gpu_memory_utilization, |
| 126 | + models, |
| 127 | + device, |
| 128 | + self.model_config_dicts, |
| 129 | + model_config_paths, |
| 130 | + ) |
| 131 | + self.max_input_sequence_length = min(max_single_sequence_length, max_total_sequence_length) |
| 132 | + |
| 133 | + # - Initialize engine state and engine. |
| 134 | + self.state = EngineState() |
| 135 | + module = tvm.get_global_func("mlc.json_ffi.CreateJSONFFIEngine", allow_missing=False)() |
| 136 | + self._ffi = { |
| 137 | + key: module[key] |
| 138 | + for key in [ |
| 139 | + "init_background_engine", |
| 140 | + "reload", |
| 141 | + "unload", |
| 142 | + "reset", |
| 143 | + "chat_completion", |
| 144 | + "abort", |
| 145 | + "get_last_error", |
| 146 | + "run_background_loop", |
| 147 | + "run_background_stream_back_loop", |
| 148 | + "exit_background_loop", |
| 149 | + ] |
| 150 | + } |
| 151 | + self.tokenizer = Tokenizer(model_args[0][0]) |
| 152 | + |
| 153 | + self.engine_config = EngineConfig( |
| 154 | + model=model_args[0][0], |
| 155 | + model_lib_path=model_args[0][1], |
| 156 | + additional_models=[model_arg[0] for model_arg in model_args[1:]], |
| 157 | + additional_model_lib_paths=[model_arg[1] for model_arg in model_args[1:]], |
| 158 | + kv_cache_page_size=16, |
| 159 | + max_num_sequence=max_batch_size, |
| 160 | + max_total_sequence_length=max_total_sequence_length, |
| 161 | + max_single_sequence_length=max_single_sequence_length, |
| 162 | + prefill_chunk_size=prefill_chunk_size, |
| 163 | + max_history_size=max_history_size, |
| 164 | + kv_state_kind=kv_state_kind, |
| 165 | + speculative_mode=speculative_mode, |
| 166 | + spec_draft_length=spec_draft_length, |
| 167 | + ) |
| 168 | + |
| 169 | + self.json_ffi_engine_config = create_json_ffi_engine_config( |
| 170 | + conv_template=self.conv_template.model_dump_json(), |
| 171 | + model_generation_cfgs={ |
| 172 | + model.model: create_model_defined_generation_config( |
| 173 | + temperature=model_config["temperature"], |
| 174 | + top_p=model_config["top_p"], |
| 175 | + frequency_penalty=model_config["frequency_penalty"], |
| 176 | + presence_penalty=model_config["presence_penalty"], |
| 177 | + ) |
| 178 | + for model, model_config in zip(models, self.model_config_dicts) |
| 179 | + }, |
| 180 | + ) |
| 181 | + |
| 182 | + self._ffi["init_background_engine"]( |
| 183 | + self.json_ffi_engine_config, |
| 184 | + self.engine_config, |
| 185 | + device, |
| 186 | + self.state.get_request_stream_callback(), |
| 187 | + None, |
| 188 | + ) |
| 189 | + |
| 190 | + def _background_loop(): |
| 191 | + self._ffi["run_background_loop"]() |
| 192 | + |
| 193 | + def _background_stream_back_loop(): |
| 194 | + self._ffi["run_background_stream_back_loop"]() |
| 195 | + |
| 196 | + # Create the background engine-driving thread and start the loop. |
| 197 | + self._background_loop_thread: threading.Thread = threading.Thread(target=_background_loop) |
| 198 | + self._background_stream_back_loop_thread: threading.Thread = threading.Thread( |
| 199 | + target=_background_stream_back_loop |
| 200 | + ) |
| 201 | + self._background_loop_thread.start() |
| 202 | + self._background_stream_back_loop_thread.start() |
| 203 | + self._terminated = False |
| 204 | + |
| 205 | + def terminate(self): |
| 206 | + self._terminated = True |
| 207 | + self._ffi["exit_background_loop"]() |
| 208 | + self._background_loop_thread.join() |
| 209 | + self._background_stream_back_loop_thread.join() |
| 210 | + |
| 211 | + def chat_completion( # pylint: disable=too-many-arguments,too-many-locals |
| 212 | + self, |
| 213 | + *, |
| 214 | + messages: List[Dict[str, Any]], |
| 215 | + model: str, |
| 216 | + frequency_penalty: Optional[float] = None, |
| 217 | + presence_penalty: Optional[float] = None, |
| 218 | + logprobs: bool = False, |
| 219 | + top_logprobs: int = 0, |
| 220 | + logit_bias: Optional[Dict[int, float]] = None, |
| 221 | + max_tokens: Optional[int] = None, |
| 222 | + n: int = 1, |
| 223 | + seed: Optional[int] = None, |
| 224 | + stop: Optional[Union[str, List[str]]] = None, |
| 225 | + stream: bool = False, |
| 226 | + temperature: Optional[float] = None, |
| 227 | + top_p: Optional[float] = None, |
| 228 | + tools: Optional[List[Dict[str, Any]]] = None, |
| 229 | + tool_choice: Optional[Union[Literal["none", "auto"], Dict]] = None, |
| 230 | + user: Optional[str] = None, |
| 231 | + ignore_eos: bool = False, |
| 232 | + response_format: Optional[Dict[str, Any]] = None, |
| 233 | + request_id: Optional[str] = None, |
| 234 | + ) -> Iterator[openai_api_protocol.ChatCompletionStreamResponse]: |
| 235 | + if request_id is None: |
| 236 | + request_id = f"chatcmpl-{engine_utils.random_uuid()}" |
| 237 | + |
| 238 | + chatcmpl_generator = self._handle_chat_completion( |
| 239 | + openai_api_protocol.ChatCompletionRequest( |
| 240 | + messages=[ |
| 241 | + openai_api_protocol.ChatCompletionMessage.model_validate(message) |
| 242 | + for message in messages |
| 243 | + ], |
| 244 | + model=model, |
| 245 | + frequency_penalty=frequency_penalty, |
| 246 | + presence_penalty=presence_penalty, |
| 247 | + logprobs=logprobs, |
| 248 | + top_logprobs=top_logprobs, |
| 249 | + logit_bias=logit_bias, |
| 250 | + max_tokens=max_tokens, |
| 251 | + n=n, |
| 252 | + seed=seed, |
| 253 | + stop=stop, |
| 254 | + stream=stream, |
| 255 | + temperature=temperature, |
| 256 | + top_p=top_p, |
| 257 | + tools=( |
| 258 | + [openai_api_protocol.ChatTool.model_validate(tool) for tool in tools] |
| 259 | + if tools is not None |
| 260 | + else None |
| 261 | + ), |
| 262 | + tool_choice=tool_choice, |
| 263 | + user=user, |
| 264 | + ignore_eos=ignore_eos, |
| 265 | + response_format=( |
| 266 | + openai_api_protocol.RequestResponseFormat.model_validate(response_format) |
| 267 | + if response_format is not None |
| 268 | + else None |
| 269 | + ), |
| 270 | + ).model_dump_json(), |
| 271 | + n=n, |
| 272 | + request_id=request_id, |
| 273 | + ) |
| 274 | + for response in chatcmpl_generator: |
| 275 | + yield response |
| 276 | + |
| 277 | + def _handle_chat_completion( |
| 278 | + self, request_json_str: str, n: int, request_id: str |
| 279 | + ) -> Iterator[openai_api_protocol.ChatCompletionStreamResponse]: |
| 280 | + self.state.sync_queue = queue.Queue() |
| 281 | + num_unfinished_requests = n |
| 282 | + |
| 283 | + success = bool(self._ffi["chat_completion"](request_json_str, request_id)) |
| 284 | + |
| 285 | + try: |
| 286 | + while num_unfinished_requests > 0: |
| 287 | + chat_completion_stream_responses_json_str = self.state.sync_queue.get() |
| 288 | + for chat_completion_response_json_str in chat_completion_stream_responses_json_str: |
| 289 | + chat_completion_response = ( |
| 290 | + openai_api_protocol.ChatCompletionStreamResponse.model_validate_json( |
| 291 | + chat_completion_response_json_str |
| 292 | + ) |
| 293 | + ) |
| 294 | + for choice in chat_completion_response.choices: |
| 295 | + if choice.finish_reason is not None: |
| 296 | + num_unfinished_requests -= 1 |
| 297 | + yield chat_completion_response |
| 298 | + except Exception as exception: # pylint: disable=broad-exception-caught |
| 299 | + self._ffi["abort"](request_id) |
| 300 | + raise exception |
| 301 | + |
| 302 | + def _test_reload(self): |
| 303 | + self._ffi["reload"](self.engine_config) |
| 304 | + |
| 305 | + def _test_reset(self): |
| 306 | + self._ffi["reset"]() |
| 307 | + |
| 308 | + def _test_unload(self): |
| 309 | + self._ffi["unload"]() |
0 commit comments