-
Notifications
You must be signed in to change notification settings - Fork 30
/
torch_node_cell.py
168 lines (145 loc) · 5.65 KB
/
torch_node_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2021 The ODE-LSTM Authors. All Rights Reserved.
import torch
import torch.nn as nn
from torchdyn.models import NeuralDE
import pytorch_lightning as pl
from pytorch_lightning.metrics.functional import accuracy
class ODELSTMCell(nn.Module):
def __init__(self, input_size, hidden_size, solver_type="dopri5"):
super(ODELSTMCell, self).__init__()
self.solver_type = solver_type
self.fixed_step_solver = solver_type.startswith("fixed_")
self.lstm = nn.LSTMCell(input_size, hidden_size)
# 1 hidden layer NODE
self.f_node = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.Tanh(),
nn.Linear(hidden_size, hidden_size),
)
self.input_size = input_size
self.hidden_size = hidden_size
if not self.fixed_step_solver:
self.node = NeuralDE(self.f_node, solver=solver_type)
else:
options = {
"fixed_euler": self.euler,
"fixed_heun": self.heun,
"fixed_rk4": self.rk4,
}
if not solver_type in options.keys():
raise ValueError("Unknown solver type '{:}'".format(solver_type))
self.node = options[self.solver_type]
def forward(self, input, hx, ts):
new_h, new_c = self.lstm(input, hx)
if self.fixed_step_solver:
new_h = self.solve_fixed(new_h, ts)
else:
indices = torch.argsort(ts)
batch_size = ts.size(0)
device = input.device
s_sort = ts[indices]
s_sort = s_sort + torch.linspace(0, 1e-4, batch_size, device=device)
# HACK: Make sure no two points are equal
trajectory = self.node.trajectory(new_h, s_sort)
new_h = trajectory[indices, torch.arange(batch_size, device=device)]
return (new_h, new_c)
def solve_fixed(self, x, ts):
ts = ts.view(-1, 1)
for i in range(3): # 3 unfolds
x = self.node(x, ts * (1.0 / 3))
return x
def euler(self, y, delta_t):
dy = self.f_node(y)
return y + delta_t * dy
def heun(self, y, delta_t):
k1 = self.f_node(y)
k2 = self.f_node(y + delta_t * k1)
return y + delta_t * 0.5 * (k1 + k2)
def rk4(self, y, delta_t):
k1 = self.f_node(y)
k2 = self.f_node(y + k1 * delta_t * 0.5)
k3 = self.f_node(y + k2 * delta_t * 0.5)
k4 = self.f_node(y + k3 * delta_t)
return y + delta_t * (k1 + 2 * k2 + 2 * k3 + k4) / 6.0
class ODELSTM(nn.Module):
def __init__(
self,
in_features,
hidden_size,
out_feature,
return_sequences=True,
solver_type="dopri5",
):
super(ODELSTM, self).__init__()
self.in_features = in_features
self.hidden_size = hidden_size
self.out_feature = out_feature
self.return_sequences = return_sequences
self.rnn_cell = ODELSTMCell(in_features, hidden_size, solver_type=solver_type)
self.fc = nn.Linear(self.hidden_size, self.out_feature)
def forward(self, x, timespans, mask=None):
device = x.device
batch_size = x.size(0)
seq_len = x.size(1)
hidden_state = [
torch.zeros((batch_size, self.hidden_size), device=device),
torch.zeros((batch_size, self.hidden_size), device=device),
]
outputs = []
last_output = torch.zeros((batch_size, self.out_feature), device=device)
for t in range(seq_len):
inputs = x[:, t]
ts = timespans[:, t].squeeze()
hidden_state = self.rnn_cell.forward(inputs, hidden_state, ts)
current_output = self.fc(hidden_state[0])
outputs.append(current_output)
if mask is not None:
cur_mask = mask[:, t].view(batch_size, 1)
last_output = cur_mask * current_output + (1.0 - cur_mask) * last_output
else:
last_output = current_output
if self.return_sequences:
outputs = torch.stack(outputs, dim=1) # return entire sequence
else:
outputs = last_output # only last item
return outputs
class IrregularSequenceLearner(pl.LightningModule):
def __init__(self, model, lr=0.005):
super().__init__()
self.model = model
self.lr = lr
def training_step(self, batch, batch_idx):
if len(batch) == 4:
x, t, y, mask = batch
else:
x, t, y = batch
mask = None
y_hat = self.model.forward(x, t, mask)
y_hat = y_hat.view(-1, y_hat.size(-1))
y = y.view(-1)
loss = nn.CrossEntropyLoss()(y_hat, y)
preds = torch.argmax(y_hat.detach(), dim=-1)
acc = accuracy(preds, y)
self.log("train_acc", acc, prog_bar=True)
self.log("train_loss", loss, prog_bar=True)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
if len(batch) == 4:
x, t, y, mask = batch
else:
x, t, y = batch
mask = None
y_hat = self.model.forward(x, t, mask)
y_hat = y_hat.view(-1, y_hat.size(-1))
y = y.view(-1)
loss = nn.CrossEntropyLoss()(y_hat, y)
preds = torch.argmax(y_hat, dim=1)
acc = accuracy(preds, y)
self.log("val_loss", loss, prog_bar=True)
self.log("val_acc", acc, prog_bar=True)
return loss
def test_step(self, batch, batch_idx):
# Here we just reuse the validation_step for testing
return self.validation_step(batch, batch_idx)
def configure_optimizers(self):
return torch.optim.Adam(self.model.parameters(), lr=self.lr)