You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
=================================== FAILURES ===================================
____________ MultiClassNeuralNetworkAlgorithmTest.test_fit_predict _____________
self = <tests.tests_algorithms.test_nn.MultiClassNeuralNetworkAlgorithmTest testMethod=test_fit_predict>
def test_fit_predict(self):
metric = Metric({"name": "logloss"})
nn = MLPAlgorithm(self.params)
nn.fit(self.X, self.y)
y_predicted = nn.predict(self.X)
> loss = metric(self.y, y_predicted)
tests/tests_algorithms/test_nn.py:153:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
supervised/utils/metric.py:408: in __call__
return self.metric(y_true, y_predicted, sample_weight=sample_weight)
supervised/utils/metric.py:24: in logloss
ll = log_loss(y_true, y_predicted.astype(np.float32), sample_weight=sample_weight)
venv/lib/python3.12/site-packages/sklearn/utils/_param_validation.py:213: in wrapper
return func(*args, **kwargs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
y_true = array([[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1,...[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1]])
y_pred = array([[0.51940924, 0.31767577, 0.33492753],
[0.4552488 , 0.32350045, 0.32806817],
[0.35579014, 0.316237... 0.32272235],
[0.31430134, 0.18764104, 0.24486749],
[0.28606585, 0.3815756 , 0.3253422 ]], dtype=float32)
@validate_params(
{
"y_true": ["array-like"],
"y_pred": ["array-like"],
"normalize": ["boolean"],
"sample_weight": ["array-like", None],
"labels": ["array-like", None],
},
prefer_skip_nested_validation=True,
)
def log_loss(y_true, y_pred, *, normalize=True, sample_weight=None, labels=None):
r"""Log loss, aka logistic loss or cross-entropy loss.
This is the loss function used in (multinomial) logistic regression
and extensions of it such as neural networks, defined as the negative
log-likelihood of a logistic model that returns ``y_pred`` probabilities
for its training data ``y_true``.
The log loss is only defined for two or more labels.
For a single sample with true label :math:`y \in \{0,1\}` and
a probability estimate :math:`p = \operatorname{Pr}(y = 1)`, the log
loss is:
.. math::
L_{\log}(y, p) = -(y \log (p) + (1 - y) \log (1 - p))
Read more in the :ref:`User Guide <log_loss>`.
Parameters
----------
y_true : array-like or label indicator matrix
Ground truth (correct) labels for n_samples samples.
y_pred : array-like of float, shape = (n_samples, n_classes) or (n_samples,)
Predicted probabilities, as returned by a classifier's
predict_proba method. If ``y_pred.shape = (n_samples,)``
the probabilities provided are assumed to be that of the
positive class. The labels in ``y_pred`` are assumed to be
ordered alphabetically, as done by
:class:`~sklearn.preprocessing.LabelBinarizer`.
`y_pred` values are clipped to `[eps, 1-eps]` where `eps` is the machine
precision for `y_pred`'s dtype.
normalize : bool, default=True
If true, return the mean loss per sample.
Otherwise, return the sum of the per-sample losses.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
labels : array-like, default=None
If not provided, labels will be inferred from y_true. If ``labels``
is ``None`` and ``y_pred`` has shape (n_samples,) the labels are
assumed to be binary and are inferred from ``y_true``.
.. versionadded:: 0.18
Returns
-------
loss : float
Log loss, aka logistic loss or cross-entropy loss.
Notes
-----
The logarithm used is the natural logarithm (base-e).
References
----------
C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer,
p. 209.
Examples
--------
>>> from sklearn.metrics import log_loss
>>> log_loss(["spam", "ham", "ham", "spam"],
... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]])
0.21616...
"""
y_pred = check_array(
y_pred, ensure_2d=False, dtype=[np.float64, np.float32, np.float16]
)
check_consistent_length(y_pred, y_true, sample_weight)
lb = LabelBinarizer()
if labels is not None:
lb.fit(labels)
else:
lb.fit(y_true)
if len(lb.classes_) == 1:
if labels is None:
raise ValueError(
"y_true contains only one label ({0}). Please "
"provide the true labels explicitly through the "
"labels argument.".format(lb.classes_[0])
)
else:
raise ValueError(
"The labels array needs to contain at least two "
"labels for log_loss, "
"got {0}.".format(lb.classes_)
)
transformed_labels = lb.transform(y_true)
if transformed_labels.shape[1] == 1:
transformed_labels = np.append(
1 - transformed_labels, transformed_labels, axis=1
)
# If y_pred is of single dimension, assume y_true to be binary
# and then check.
if y_pred.ndim == 1:
y_pred = y_pred[:, np.newaxis]
if y_pred.shape[1] == 1:
y_pred = np.append(1 - y_pred, y_pred, axis=1)
eps = np.finfo(y_pred.dtype).eps
# Make sure y_pred is normalized
y_pred_sum = y_pred.sum(axis=1)
if not np.allclose(y_pred_sum, 1, rtol=np.sqrt(eps)):
> warnings.warn(
"The y_pred values do not sum to one. Make sure to pass probabilities.",
UserWarning,
)
E UserWarning: The y_pred values do not sum to one. Make sure to pass probabilities.
venv/lib/python3.12/site-packages/sklearn/metrics/_classification.py:2956: UserWarning
=========================== short test summary info ============================
FAILED tests/tests_algorithms/test_nn.py::MultiClassNeuralNetworkAlgorithmTest::test_fit_predict
============================== 1 failed in 1.99s ===============================
The text was updated successfully, but these errors were encountered:
a-szulc
changed the title
error in test: tests/tests_algorithms/test_nn.py::MultiClassNeuralNetworkAlgorithmTest::test_fit_predict
warning in test: tests/tests_algorithms/test_nn.py::MultiClassNeuralNetworkAlgorithmTest::test_fit_predict
Aug 23, 2024
a-szulc
changed the title
warning in test: tests/tests_algorithms/test_nn.py::MultiClassNeuralNetworkAlgorithmTest::test_fit_predict
user warning in test: tests/tests_algorithms/test_nn.py::MultiClassNeuralNetworkAlgorithmTest::test_fit_predict
Aug 23, 2024
The text was updated successfully, but these errors were encountered: