-
Notifications
You must be signed in to change notification settings - Fork 411
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Categorical preprocesing warning #777
Comments
Please provide code to reproduce the issue. |
def generate_models():
datasets = [
kddcup09_upselling.get_data()
]
algorithms=[
'Baseline',
'CatBoost',
'Decision Tree',
'Extra Trees',
'LightGBM',
'Neural Network',
'Random Forest',
'Xgboost'
]
for data in datasets:
for alg in algorithms:
# create directions for AutoML
if not os.path.exists(f"AutoML/{data[2]}/{alg}"):
os.makedirs(f"AutoML/{data[2]}/{alg}")
# various datasets need either rmse or accuracy as metric
if data[-1] == "reg":
eval_metric = "rmse"
else:
eval_metric = "accuracy"
# create automl object
automl = AutoML(
mode="Compete",
total_time_limit=600,
results_path=f"AutoML/{data[2]}/{alg}",
algorithms=[alg],
train_ensemble=False,
golden_features=False,
features_selection=False,
stack_models=False,
kmeans_features=False,
explain_level=0,
boost_on_errors=False,
eval_metric=eval_metric,
validation_strategy={
"validation_type": "kfold",
"k_folds": 5,
"shuffle": True,
"stratify": True,
"random_seed": 123
},
start_random_models=10,
hill_climbing_steps=3,
top_models_to_improve=3,
random_state=1234)
# train automl
automl.fit(data[0], data[1]) from sklearn.datasets import fetch_openml
def get_data():
# read data from openml page
name = "Kddcup09_upselling"
dataset_type = "binary"
data = fetch_openml(data_id=1114, as_frame=True)
X = data.data
y = data.target
return X, y, name, dataset_type |
@Marchlak are you able to reproduce this issue? |
Good job 👍 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
miniconda3\Lib\site-packages\supervised\preprocessing\preprocessing_categorical.py:81:
FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '[0 0 0 ... 0 0 0]' has dtype incompatible with category, please explicitly cast to a compatible dtype first.
Dataset: https://www.openml.org/search?type=data&sort=runs&status=active&id=1114
The text was updated successfully, but these errors were encountered: