Releases: mljar/mljar-supervised
Releases · mljar/mljar-supervised
v1.1.0
Hey there, MLJAR enthusiasts! 🌟 In this release, we're giving a high-five 🙌 to the latest and greatest versions of some rockstar ML packages:
🐍 We're supporting Python with versions: 3.8, 3.9, 3.10, 3.11.
Fixes 🛠️
Alrighty, with great power (read: updates) comes great responsibility (read: fixes)! We've rolled up our sleeves to zap those pesky warnings caused by our major package glow-up:
- 🎓 Added classes_ for those classy classifiers (#654)
- 📊 Patched up a boo-boo in the calibration plot (#655)
- 🔧 Tweaked a model type warning that was acting all sassy (#638)
Keep rocking and happy coding! 🎸🤖🚀
v1.0.2
v1.0.1
v1.0.0
0.11.5
0.11.4
0.11.3
0.11.2
Enhancements
- #523 Add type hints to AutoML class, thank you @DanielR59
- #519 save train&validation index to file in train/test split, thanks @filipsPL @MaciekEO
Bug fixes
- #496 fix exception in baseline mode, thanks @DanielR59 @moshe-rl
- #522 fixed requirements issue, thanks @DanielR59 @MaciekEO
- #514 remove warning, thanks @MaciekEO
- #511 disable EDA, thanks @MaciekEO
0.11.0
0.10.4
Enhancements
- #81 add scatter plot predicted vs target in regression
- #158 add ROC curve for binary classification
- #336 add visualization for Optuna results
- #352 add support for Colab
- #374 update seaborn
- #378 set golden features number
- #379 switch off boost_on_errors step in Optuna mode
- #380 add custom cross validation strategy
- #386 add correlation heatmap
- #387 add residual plot
- #389 add feature importance heatmap
- #390 add custom eval metric
- #393 update sklearn
Bug fixes
Docs
- #391 add info about hyperparameters optimization methods
Big thank you for help for: @ecoskian, @xuzhang5788, @xiaobo, @RafaD5, @drorhilman, @strelzoff-erdc, @muxuezi, @tresoldi THANK YOU !!!