-
-
Notifications
You must be signed in to change notification settings - Fork 404
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Can't predict on randomForest when test set contains NA's in features #1515
Comments
This sounds like a bug. Could you make a unit test that reproduces it please? |
before you produce a unit test: |
why are you asking him that? he already kinda posted that test....? the problem is more: what happens here? |
the real problem seems to be: but here the prediction data frame is directly handled. and the underlying RF just creates an NA for the prediction. this also links to the issue we should probably create the task description internally and sanity check it. |
This problem does not only occur with the random forest. I ran every available learner on this problem and here is what i found out:
So the problem here is, that only the test set contains missing values, and some learners support that, others don't. Here is a small summary of the results:
|
Well we already have the |
The bug for if (is.matrix(p))
colnames(p) = NULL
else
names(p) = NULL anywhere in between would fix this. There are still other learners, however, that throw errors when the prediction data set contains |
I am still getting the same error as mentioned in the OP. Have to inspect. library(mlr)
#> Loading required package: ParamHelpers
lrn.rf = makeLearner("classif.randomForest")
mod = train(lrn.rf, iris.task)
test.df = getTaskData(iris.task)
test.df[1L, 1L] = NA
# throws error: row names contain missing values
predict(mod, newdata = test.df)
#> Error in (function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE, : row names contain missing values
# if I'm directly using the predict method from randomForest it works
predict(mod$learner.model, test.df)
#> <NA> 2 3 4 5 6 7
#> <NA> setosa setosa setosa setosa setosa setosa
#> 8 9 10 11 12 13 14
#> setosa setosa setosa setosa setosa setosa setosa
#> 15 16 17 18 19 20 21
#> setosa setosa setosa setosa setosa setosa setosa
#> 22 23 24 25 26 27 28
#> setosa setosa setosa setosa setosa setosa setosa
#> 29 30 31 32 33 34 35
#> setosa setosa setosa setosa setosa setosa setosa
#> 36 37 38 39 40 41 42
#> setosa setosa setosa setosa setosa setosa setosa
#> 43 44 45 46 47 48 49
#> setosa setosa setosa setosa setosa setosa setosa
#> 50 51 52 53 54 55 56
#> setosa versicolor versicolor versicolor versicolor versicolor versicolor
#> 57 58 59 60 61 62 63
#> versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> 64 65 66 67 68 69 70
#> versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> 71 72 73 74 75 76 77
#> versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> 78 79 80 81 82 83 84
#> versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> 85 86 87 88 89 90 91
#> versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> 92 93 94 95 96 97 98
#> versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> 99 100 101 102 103 104 105
#> versicolor versicolor virginica virginica virginica virginica virginica
#> 106 107 108 109 110 111 112
#> virginica virginica virginica virginica virginica virginica virginica
#> 113 114 115 116 117 118 119
#> virginica virginica virginica virginica virginica virginica virginica
#> 120 121 122 123 124 125 126
#> virginica virginica virginica virginica virginica virginica virginica
#> 127 128 129 130 131 132 133
#> virginica virginica virginica virginica virginica virginica virginica
#> 134 135 136 137 138 139 140
#> virginica virginica virginica virginica virginica virginica virginica
#> 141 142 143 144 145 146 147
#> virginica virginica virginica virginica virginica virginica virginica
#> 148 149 150
#> virginica virginica virginica
#> Levels: setosa versicolor virginica Created on 2019-12-31 by the reprex package (v0.3.0) Session infodevtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 3.6.2 Patched (2019-12-12 r77564)
#> os macOS Mojave 10.14.6
#> system x86_64, darwin15.6.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Berlin
#> date 2019-12-31
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib
#> assertthat 0.2.1 2019-03-21 [1]
#> backports 1.1.5 2019-10-02 [1]
#> BBmisc 1.11 2017-03-10 [1]
#> callr 3.4.0 2019-12-09 [1]
#> checkmate 1.9.4 2019-07-04 [1]
#> cli 2.0.0.9000 2019-12-21 [1]
#> colorspace 1.4-1 2019-03-18 [1]
#> crayon 1.3.4 2017-09-16 [1]
#> data.table 1.12.8 2019-12-09 [1]
#> desc 1.2.0 2018-05-01 [1]
#> devtools 2.2.1 2019-09-24 [1]
#> digest 0.6.23 2019-11-23 [1]
#> dplyr 0.8.3 2019-07-04 [1]
#> ellipsis 0.3.0 2019-09-20 [1]
#> evaluate 0.14 2019-05-28 [1]
#> fansi 0.4.0 2018-10-05 [1]
#> fastmatch 1.1-0 2017-01-28 [1]
#> fs 1.3.1 2019-05-06 [1]
#> ggplot2 3.2.1 2019-08-10 [1]
#> glue 1.3.1 2019-03-12 [1]
#> gtable 0.3.0 2019-03-25 [1]
#> highr 0.8 2019-03-20 [1]
#> htmltools 0.4.0 2019-10-04 [1]
#> knitr 1.26 2019-11-12 [1]
#> lattice 0.20-38 2018-11-04 [2]
#> lazyeval 0.2.2 2019-03-15 [1]
#> lifecycle 0.1.0 2019-08-01 [1]
#> magrittr 1.5 2014-11-22 [1]
#> Matrix 1.2-18 2019-11-27 [2]
#> memoise 1.1.0 2017-04-21 [1]
#> mlr * 2.16.0.9000 2019-12-11 [1]
#> munsell 0.5.0 2018-06-12 [1]
#> parallelMap 1.4.0.9000 2019-12-19 [1]
#> ParamHelpers * 1.13.0.9000 2019-12-11 [1]
#> pillar 1.4.3 2019-12-20 [1]
#> pkgbuild 1.0.6 2019-10-09 [1]
#> pkgconfig 2.0.3 2019-09-22 [1]
#> pkgload 1.0.2 2018-10-29 [1]
#> prettyunits 1.0.2 2015-07-13 [1]
#> processx 3.4.1 2019-07-18 [1]
#> ps 1.3.0 2018-12-21 [1]
#> purrr 0.3.3 2019-10-18 [1]
#> R6 2.4.1 2019-11-12 [1]
#> randomForest 4.6-14 2018-03-25 [1]
#> Rcpp 1.0.3 2019-11-08 [1]
#> remotes 2.1.0 2019-06-24 [1]
#> rlang 0.4.2.9000 2019-12-25 [1]
#> rmarkdown 2.0 2019-12-12 [1]
#> rprojroot 1.3-2 2018-01-03 [1]
#> scales 1.1.0 2019-11-18 [1]
#> sessioninfo 1.1.1 2018-11-05 [1]
#> stringi 1.4.3 2019-03-12 [1]
#> stringr 1.4.0 2019-02-10 [1]
#> survival 3.1-8 2019-12-03 [2]
#> testthat 2.3.1 2019-12-01 [1]
#> tibble 2.1.3 2019-06-06 [1]
#> tidyselect 0.2.5 2018-10-11 [1]
#> usethis 1.5.1.9000 2019-12-14 [1]
#> withr 2.1.2 2018-03-15 [1]
#> xfun 0.11 2019-11-12 [1]
#> XML 3.98-1.20 2019-06-06 [1]
#> yaml 2.2.0 2018-07-25 [1]
#> source
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> Github (r-lib/cli@0293ae7)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.0)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.2)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.2)
#> CRAN (R 3.6.1)
#> local
#> CRAN (R 3.6.1)
#> local
#> Github (berndbischl/ParamHelpers@c2d989c)
#> CRAN (R 3.6.2)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.0)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> Github (r-lib/rlang@ce4f717)
#> CRAN (R 3.6.2)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.2)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> Github (r-lib/usethis@b2e894e)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.1)
#> CRAN (R 3.6.0)
#>
#> [1] /Users/pjs/Library/R/3.6/library
#> [2] /Library/Frameworks/R.framework/Versions/3.6/Resources/library |
I don't know if this is a bug in some sort or if I'm overlooking something, but this baffled @ja-thomas and me a bit this morning.
Consider a simple case where you have a missing value somewhere in your test set like in this example:
mlr then throws an error when you try to predict on this set, randomForest's predict method doesn't though:
I tried printing out
.newdata
inpredictLearner.classif.randomForest
to see if we do sth unwanted with the data.frame before sending it to the learner's predict method but row names / str etc. looks fine.Any ideas?
The text was updated successfully, but these errors were encountered: