-
-
Notifications
You must be signed in to change notification settings - Fork 25
/
PipeOpTaskPreproc.R
454 lines (430 loc) · 26 KB
/
PipeOpTaskPreproc.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#' @title Task Preprocessing Base Class
#'
#' @usage NULL
#' @format Abstract [`R6Class`] inheriting from [`PipeOp`].
#'
#' @description
#' Base class for handling most "preprocessing" operations. These
#' are operations that have exactly one [`Task`][mlr3::Task] input and one [`Task`][mlr3::Task] output,
#' and expect the column layout of these [`Task`][mlr3::Task]s during input and output
#' to be the same.
#'
#' Prediction-behavior of preprocessing operations should always be independent for each row in the input-[`Task`][mlr3::Task].
#' This means that the prediction-operation of preprocessing-[`PipeOp`]s should commute with `rbind()`: Running prediction
#' on an `n`-row [`Task`][mlr3::Task] should result in the same result as `rbind()`-ing the prediction-result from `n`
#' 1-row [`Task`][mlr3::Task]s with the same content. In the large majority of cases, the number and order of rows
#' should also not be changed during prediction.
#'
#' Users must implement `private$.train_task()` and `private$.predict_task()`, which have a [`Task`][mlr3::Task]
#' input and should return that [`Task`][mlr3::Task]. The [`Task`][mlr3::Task] should, if possible, be
#' manipulated in-place, and should not be cloned.
#'
#' Alternatively, the `private$.train_dt()` and `private$.predict_dt()` functions can be implemented, which operate on
#' [`data.table`][data.table::data.table] objects instead. This should generally only be done if all
#' data is in some way altered (e.g. PCA changing all columns to principal components) and not if only
#' a few columns are added or removed (e.g. feature selection) because this should be done at the [`Task`][mlr3::Task]-level
#' with `private$.train_task()`. The `private$.select_cols()` function can be overloaded for `private$.train_dt()` and `private$.predict_dt()`
#' to operate only on subsets of the [`Task`][mlr3::Task]'s data, e.g. only on numerical columns.
#'
#' If the `can_subset_cols` argument of the constructor is `TRUE` (the default), then the hyperparameter `affect_columns`
#' is added, which can limit the columns of the [`Task`][mlr3::Task] that is modified by the [`PipeOpTaskPreproc`]
#' using a [`Selector`] function. Note this functionality is entirely independent of the `private$.select_cols()` functionality.
#'
#' [`PipeOpTaskPreproc`] is useful for operations that behave differently during training and prediction. For operations
#' that perform essentially the same operation and only need to perform extra work to build a `$state` during training,
#' the [`PipeOpTaskPreprocSimple`] class can be used instead.
#'
#' @section Construction:
#' ```
#' PipeOpTaskPreproc$new(id, param_set = ps(), param_vals = list(), can_subset_cols = TRUE,
#' packages = character(0), task_type = "Task", tags = NULL, feature_types = mlr_reflections$task_feature_types)
#' ```
#'
#' * `id` :: `character(1)`\cr
#' Identifier of resulting object. See `$id` slot of [`PipeOp`].
#' * `param_set` :: [`ParamSet`][paradox::ParamSet]\cr
#' Parameter space description. This should be created by the subclass and given to `super$initialize()`.
#' * `param_vals` :: named `list`\cr
#' List of hyperparameter settings, overwriting the hyperparameter settings given in `param_set`. The
#' subclass should have its own `param_vals` parameter and pass it on to `super$initialize()`. Default `list()`.
#' * `can_subset_cols` :: `logical(1)`\cr
#' Whether the `affect_columns` parameter should be added which lets the user limit the columns that are
#' modified by the [`PipeOpTaskPreproc`]. This should generally be `FALSE` if the operation adds or removes
#' rows from the [`Task`][mlr3::Task], and `TRUE` otherwise. Default is `TRUE`.
#' * packages :: `character`\cr
#' Set of all required packages for the [`PipeOp`]'s `private$.train()` and `private$.predict()` methods. See `$packages` slot.
#' Default is `character(0)`.
#' * `task_type` :: `character(1)`\cr
#' The class of [`Task`][mlr3::Task] that should be accepted as input and will be returned as output. This
#' should generally be a `character(1)` identifying a type of [`Task`][mlr3::Task], e.g. `"Task"`, `"TaskClassif"` or
#' `"TaskRegr"` (or another subclass introduced by other packages). Default is `"Task"`.
#' * tags :: `character` | `NULL`\cr
#' Tags of the resulting `PipeOp`. This is added to the tag `"data transform"`. Default `NULL`.
#'* `feature_types` :: `character`\cr
#' Feature types affected by the `PipeOp`. See `private$.select_cols()` for more information.
#' Defaults to all available feature types.
#'
#' @section Input and Output Channels:
#' [`PipeOpTaskPreproc`] has one input channel named `"input"`, taking a [`Task`][mlr3::Task], or a subclass of
#' [`Task`][mlr3::Task] if the `task_type` construction argument is given as such; both during training and prediction.
#'
#' [`PipeOpTaskPreproc`] has one output channel named `"output"`, producing a [`Task`][mlr3::Task], or a subclass;
#' the [`Task`][mlr3::Task] type is the same as for input; both during training and prediction.
#'
#' The output [`Task`][mlr3::Task] is the modified input [`Task`][mlr3::Task] according to the overloaded
#' `private$.train_task()`/`private$.predict_taks()` or `private$.train_dt()`/`private$.predict_dt()` functions.
#'
#' @section State:
#' The `$state` is a named `list`; besides members added by inheriting classes, the members are:
#' * `affect_cols` :: `character`\cr
#' Names of features being selected by the `affect_columns` parameter, if present; names of *all* present features otherwise.
#' * `intasklayout` :: [`data.table`]\cr
#' Copy of the training [`Task`][mlr3::Task]'s `$feature_types` slot. This is used during prediction to ensure that
#' the prediction [`Task`][mlr3::Task] has the same features, feature layout, and feature types as during training.
#' * `outtasklayout` :: [`data.table`]\cr
#' Copy of the trained [`Task`][mlr3::Task]'s `$feature_types` slot. This is used during prediction to ensure that
#' the [`Task`][mlr3::Task] resulting from the prediction operation has the same features, feature layout, and feature types as after training.
#' * `dt_columns` :: `character`\cr
#' Names of features selected by the `private$.select_cols()` call during training. This is only present if the `private$.train_dt()` functionality is used,
#' and not present if the `private$.train_task()` function is overloaded instead.
#' * `feature_types` :: `character`\cr
#' Feature types affected by the `PipeOp`. See `private$.select_cols()` for more information.
#'
#' @section Parameters:
#' * `affect_columns` :: `function` | [`Selector`] | `NULL` \cr
#' What columns the [`PipeOpTaskPreproc`] should operate on. This parameter is only present if the constructor is called with
#' the `can_subset_cols` argument set to `TRUE` (the default).\cr
#' The parameter must be a [`Selector`] function, which takes a [`Task`][mlr3::Task] as argument and returns a `character`
#' of features to use.\cr
#' See [`Selector`] for example functions. Defaults to `NULL`, which selects all features.
#'
#' @section Internals:
#' [`PipeOpTaskPreproc`] is an abstract class inheriting from [`PipeOp`]. It implements the `private$.train()` and
#' `$.predict()` functions. These functions perform checks and go on to call `private$.train_task()` and `private$.predict_task()`.
#' A subclass of [`PipeOpTaskPreproc`] may implement these functions, or implement `private$.train_dt()` and `private$.predict_dt()` instead.
#' This works by having the default implementations of `private$.train_task()` and `private$.predict_task()` call `private$.train_dt()` and `private$.predict_dt()`,
#' respectively.
#'
#' The `affect_columns` functionality works by unsetting columns by removing their "col_role" before
#' processing, and adding them afterwards by setting the col_role to `"feature"`.
#'
#' @section Fields:
#' Fields inherited from [`PipeOp`].
#'
#' @section Methods:
#' Methods inherited from [`PipeOp`], as well as:
#' * `.train_task`\cr
#' ([`Task`][mlr3::Task]) -> [`Task`][mlr3::Task]\cr
#' Called by the [`PipeOpTaskPreproc`]'s implementation of `private$.train()`. Takes a single [`Task`][mlr3::Task] as input
#' and modifies it (ideally in-place without cloning) while storing information in the `$state` slot. Note that unlike
#' `$.train()`, the argument is *not* a list but a singular [`Task`][mlr3::Task], and the return object is also *not* a list but
#' a singular [`Task`][mlr3::Task]. Also, contrary to `private$.train()`, the `$state` being generated must be a `list`, which
#' the [`PipeOpTaskPreproc`] will add additional slots to (see Section *State*). Care should be taken to avoid name collisions between
#' `$state` elements added by `private$.train_task()` and [`PipeOpTaskPreproc`].\cr
#' By default this function calls the `private$.train_dt()` function, but it can be overloaded to perform operations on the [`Task`][mlr3::Task]
#' directly.
#' * `.predict_task`\cr
#' ([`Task`][mlr3::Task]) -> [`Task`][mlr3::Task]\cr
#' Called by the [`PipeOpTaskPreproc`]'s implementation of `$.predict()`. Takes a single [`Task`][mlr3::Task] as input
#' and modifies it (ideally in-place without cloning) while using information in the `$state` slot. Works analogously to
#' `private$.train_task()`. If `private$.predict_task()` should only be overloaded if `private$.train_task()` is overloaded (i.e. `private$.train_dt()` is *not* used).
#' * `.train_dt(dt, levels, target)` \cr
#' ([`data.table`], named `list`, `any`) -> [`data.table`] | `data.frame` | `matrix` \cr
#' Train [`PipeOpTaskPreproc`] on `dt`, transform it and store a state in `$state`. A transformed object must be returned
#' that can be converted to a `data.table` using [`as.data.table`]. `dt` does not need to be copied deliberately, it
#' is possible and encouraged to change it in-place.\cr
#' The `levels` argument is a named list of factor levels for factorial or character features.
#' If the input [`Task`][mlr3::Task] inherits from [`TaskSupervised`][mlr3::TaskSupervised], the `target` argument
#' contains the `$truth()` information of the training [`Task`][mlr3::Task]; its type depends on the [`Task`][mlr3::Task]
#' type being trained on.\cr
#' This method can be overloaded when inheriting from [`PipeOpTaskPreproc`], together with `private$.predict_dt()` and optionally
#' `private$.select_cols()`; alternatively, `private$.train_task()` and `private$.predict_task()` can be overloaded.
#' * `.predict_dt(dt, levels)` \cr
#' ([`data.table`], named `list`) -> [`data.table`] | `data.frame` | `matrix` \cr
#' Predict on new data in `dt`, possibly using the stored `$state`. A transformed object must be returned
#' that can be converted to a `data.table` using [`as.data.table`]. `dt` does not need to be copied deliberately, it
#' is possible and encouraged to change it in-place.\cr
#' The `levels` argument is a named list of factor levels for factorial or character features.\cr
#' This method can be overloaded when inheriting `PipeOpTaskPreproc`, together with `private$.train_dt()` and optionally
#' `private$.select_cols()`; alternatively, `private$.train_task()` and `private$.predict_task()` can be overloaded.
#' * `.select_cols(task)` \cr
#' ([`Task`][mlr3::Task]) -> `character` \cr
#' Selects which columns the [`PipeOp`] operates on, if `private$.train_dt()` and `private$.predict_dt()` are overloaded. This function
#' is not called if `private$.train_task()` and `private$.predict_task()` are overloaded. In contrast to
#' the `affect_columns` parameter. `private$.select_cols()` is for the *inheriting class* to determine which columns
#' the operator should function on, e.g. based on feature type, while `affect_columns` is a way for the *user*
#' to limit the columns that a [`PipeOpTaskPreproc`] should operate on.\cr
#' This method can optionally be overloaded when inheriting [`PipeOpTaskPreproc`], together with `private$.train_dt()` and
#' `private$.predict_dt()`; alternatively, `private$.train_task()` and `private$.predict_task()` can be overloaded.\cr
#' If this method is not overloaded, it defaults to selecting of type indicated by the `feature_types` construction argument.
#'
#' @family mlr3pipelines backend related
#' @family PipeOps
#' @template seealso_pipeopslist
#' @include PipeOp.R
#' @export
PipeOpTaskPreproc = R6Class("PipeOpTaskPreproc",
inherit = PipeOp,
public = list(
initialize = function(id, param_set = ps(), param_vals = list(), can_subset_cols = TRUE,
packages = character(0), task_type = "Task", tags = NULL, feature_types = mlr_reflections$task_feature_types) {
if (can_subset_cols) {
affectcols_ps = ps(affect_columns = p_uty(custom_check = check_function_or_null, default = selector_all(), tags = "train"))
if (inherits(param_set, "ParamSet")) {
if (paradox_info$is_old) {
lapply(affectcols_ps$params, param_set$add)
} else {
param_set = c(param_set, affectcols_ps)
}
} else {
private$.affectcols_ps = affectcols_ps
param_set = c(param_set, alist(private$.affectcols_ps))
}
}
private$.feature_types = assert_subset(feature_types, mlr_reflections$task_feature_types)
super$initialize(id = id, param_set = param_set, param_vals = param_vals,
input = data.table(name = "input", train = task_type, predict = task_type),
output = data.table(name = "output", train = task_type, predict = task_type),
packages = packages, tags = c(tags, "data transform")
)
}
),
active = list(
feature_types = function(types) {
if (!missing(types)) stop("feature_types can not be changed. Use the 'affect_columns' hyperparameter instead!")
private$.feature_types
}
),
private = list(
.affectcols_ps = NULL,
.feature_types = NULL,
.train = function(inputs) {
intask = inputs[[1]]$clone(deep = TRUE)
do_subset = !is.null(self$param_set$values$affect_columns)
affected_cols = intask$feature_names
if (do_subset) {
affected_cols = self$param_set$values$affect_columns(intask)
assert_subset(affected_cols, intask$feature_names, empty.ok = TRUE)
# FIXME: this fails when something is both a feature and something else
remove_cols = setdiff(intask$feature_names, affected_cols)
intask$col_roles = map(intask$col_roles, .f = setdiff, y = remove_cols)
}
intasklayout = copy(intask$feature_types)
intask = private$.train_task(intask)
self$state$affected_cols = affected_cols
self$state$intasklayout = intasklayout
self$state$outtasklayout = copy(intask$feature_types)
self$state$outtaskshell = intask$data(rows = intask$row_ids[0])
if (do_subset) {
# FIXME: this fails if .train_task added a column with the same name
intask$col_roles$feature = union(intask$col_roles$feature, y = remove_cols)
}
list(intask)
},
.predict = function(inputs) {
intask = inputs[[1]]$clone(deep = TRUE)
do_subset = !is.null(self$param_set$values$affect_columns)
if (do_subset) {
# FIXME: see train fixme: this fails when something is both a feature and something else
remove_cols = setdiff(intask$feature_names, self$state$affected_cols)
intask$col_roles = map(intask$col_roles, .f = setdiff, y = remove_cols)
}
if (!isTRUE(all.equal(self$state$intasklayout, intask$feature_types, ignore.row.order = TRUE))) {
stopf("Input task during prediction of %s does not match input task during training.", self$id)
}
if (!intask$nrow) {
# don't put the burdon of having to deal with 0-row tasks on the individual PipeOps.
# Instead we do this here: add the correct columns (which are all empty)
targetlayout = self$state$outtasklayout
intask$
select(fintersect(intask$feature_types, targetlayout)$id)$
cbind(self$state$outtaskshell[, fsetdiff(targetlayout, intask$feature_types)$id, with = FALSE])
} else {
intask = private$.predict_task(intask)
}
if (!isTRUE(all.equal(self$state$outtasklayout, intask$feature_types, ignore.row.order = TRUE))) {
stopf("Processed output task during prediction of %s does not match output task during training.", self$id)
}
if (do_subset) {
# FIXME: see train fixme: this fails if .train_task added a column with the same name
intask$col_roles$feature = union(intask$col_roles$feature, y = remove_cols)
}
list(intask)
},
.train_task = function(task) {
dt_columns = private$.select_cols(task)
cols = dt_columns
if (!length(cols)) {
self$state = list(dt_columns = dt_columns)
return(task)
}
dt = task$data(cols = cols)
dt = if (test_r6(task, classes = "TaskSupervised")) {
as.data.table(private$.train_dt(dt, task$levels(cols), task$truth()))
} else {
as.data.table(private$.train_dt(dt, task$levels(cols)))
}
self$state$dt_columns = dt_columns
task$select(setdiff(task$feature_names, cols))$cbind(dt)
},
.predict_task = function(task) {
cols = self$state$dt_columns
if (!length(cols)) {
return(task)
}
dt = task$data(cols = cols)
dt = as.data.table(private$.predict_dt(dt, task$levels(cols)))
task$select(setdiff(task$feature_names, cols))$cbind(dt)
},
.train_dt = function(dt, levels, target) stop("Abstract."),
.predict_dt = function(dt, levels) stop("Abstract."),
.select_cols = function(task) selector_type(private$.feature_types)(task)
)
)
#' @title Simple Task Preprocessing Base Class
#
#' @usage NULL
#' @format Abstract [`R6Class`] inheriting from [`PipeOpTaskPreproc`]/[`PipeOp`].
#'
#' @description
#' Base class for handling many "preprocessing" operations
#' that perform essentially the same operation during training and prediction.
#' Instead implementing a `private$.train_task()` and a `private$.predict_task()` operation, only
#' a `private$.get_state()` and a `private$.transform()` operation needs to be defined,
#' both of which take one argument: a [`Task`][mlr3::Task].
#'
#' Alternatively, analogously to the [`PipeOpTaskPreproc`] approach of offering `private$.train_dt()`/`private$.predict_dt()`,
#' the `private$.get_state_dt()` and `private$.transform_dt()` functions may be implemented.
#'
#' `private$.get_state` must not change its input value in-place and must return
#' something that will be written into `$state`
#' (which must not be NULL), `private$.transform()` should modify its argument in-place;
#' it is called both during training and prediction.
#'
#' This inherits from [`PipeOpTaskPreproc`] and behaves essentially the same.
#'
#' @section Construction:
#' ```
#' PipeOpTaskPreprocSimple$new(id, param_set = ps(), param_vals = list(), can_subset_cols = TRUE, packages = character(0), task_type = "Task")
#' ```
#' (Construction is identical to [`PipeOpTaskPreproc`].)
#'
#' * `id` :: `character(1)`\cr
#' Identifier of resulting object. See `$id` slot of [`PipeOp`].
#' * `param_set` :: [`ParamSet`][paradox::ParamSet]\cr
#' Parameter space description. This should be created by the subclass and given to `super$initialize()`.
#' * `param_vals` :: named `list`\cr
#' List of hyperparameter settings, overwriting the hyperparameter settings given in `param_set`. The
#' subclass should have its own `param_vals` parameter and pass it on to `super$initialize()`. Default `list()`.
#' * `can_subset_cols` :: `logical(1)`\cr
#' Whether the `affect_columns` parameter should be added which lets the user limit the columns that are
#' modified by the [`PipeOpTaskPreprocSimple`]. This should generally be `FALSE` if the operation adds or removes
#' rows from the [`Task`][mlr3::Task], and `TRUE` otherwise. Default is `TRUE`.
#' * packages :: `character`\cr
#' Set of all required packages for the [`PipeOp`]'s `private$.train()` and `private$.predict()` methods. See `$packages` slot.
#' Default is `character(0)`.
#' * `task_type` :: `character(1)`\cr
#' The class of [`Task`][mlr3::Task] that should be accepted as input and will be returned as output. This
#' should generally be a `character(1)` identifying a type of [`Task`][mlr3::Task], e.g. `"Task"`, `"TaskClassif"` or
#' `"TaskRegr"` (or another subclass introduced by other packages). Default is `"Task"`.
#'
#' @section Input and Output Channels:
#' Input and output channels are inherited from [`PipeOpTaskPreproc`].
#'
#' The output during training and prediction is the [`Task`][mlr3::Task], modified by `private$.transform()` or `private$.transform_dt()`.
#'
#' @section State:
#' The `$state` is a named `list` with the `$state` elements inherited from [`PipeOpTaskPreproc`].
#'
#' @section Parameters:
#' The parameters are the parameters inherited from [`PipeOpTaskPreproc`].
#'
#' @section Internals:
#' [`PipeOpTaskPreprocSimple`] is an abstract class inheriting from [`PipeOpTaskPreproc`] and implementing the
#' `private$.train_task()` and `private$.predict_task()` functions. A subclass of [`PipeOpTaskPreprocSimple`] may implement the
#' functions `private$.get_state()` and `private$.transform()`, or alternatively the functions `private$.get_state_dt()` and `private$.transform_dt()`
#' (as well as `private$.select_cols()`, in the latter case). This works by having the default implementations of
#' `private$.get_state()` and `private$.transform()` call `private$.get_state_dt()` and `private$.transform_dt()`.
#'
#' @section Fields:
#' Fields inherited from [`PipeOp`].
#'
#' @section Methods:
#' Methods inherited from [`PipeOpTaskPreproc`], as well as:
#' * `.get_state(task)` \cr
#' ([`Task`][mlr3::Task]) -> named `list`\cr
#' Store create something that will be stored in `$state` during training phase of `PipeOpTaskPreprocSimple`.
#' The state can then influence the `private$.transform()` function. Note that `private$.get_state()` must *return* the state, and
#' should not store it in `$state`. It is not strictly necessary to implement either `private$.get_state()` or `private$.get_state_dt()`;
#' if they are not implemented, the state will be stored as `list()`. \cr
#' This method can optionally be overloaded when inheriting from [`PipeOpTaskPreprocSimple`], together with `private$.transform()`;
#' alternatively, `private$.get_state_dt()` (optional) and `private$.transform_dt()` (and possibly `private$.select_cols()`, from [`PipeOpTaskPreproc`])
#' can be overloaded.
#' * `.transform(task)` \cr
#' ([`Task`][mlr3::Task]) -> [`Task`][mlr3::Task]\cr
#' Predict on new data in `task`, possibly using the stored `$state`. `task` should not be cloned, instead it should be
#' changed in-place. This method is called both during training and prediction phase, and should essentially behave the
#' same independently of phase. (If this is incongruent with the functionality to be implemented, then it should inherit from
#' [`PipeOpTaskPreproc`], not from [`PipeOpTaskPreprocSimple`].) \cr
#' This method can be overloaded when inheriting from [`PipeOpTaskPreprocSimple`], optionally with `private$.get_state()`;
#' alternatively, `private$.get_state_dt()` (optional) and `private$.transform_dt()` (and possibly `private$.select_cols()`, from [`PipeOpTaskPreproc`])
#' can be overloaded.
#' * `.get_state_dt(dt)` \cr
#' ([`data.table`]) -> named `list`\cr
#' Create something that will be stored in `$state` during training phase of `PipeOpTaskPreprocSimple`.
#' The state can then influence the `private$.transform_dt()` function. Note that `private$.get_state_dt()` must *return* the state, and
#' should not store it in `$state`. If neither `private$.get_state()` nor `private$.get_state_dt()` are overloaded, the state will
#' be stored as `list()`. \cr
#' This method can optionally be overloaded when inheriting from [`PipeOpTaskPreprocSimple`], together with `private$.transform_dt()`
#' (and optionally `private$.select_cols()`, from [`PipeOpTaskPreproc`]); Alternatively, `private$.get_state()` (optional) and `private$.transform()`
#' can be overloaded.
#' * `.transform_dt(dt)` \cr
#' ([`data.table`]) -> [`data.table`] | `data.frame` | `matrix` \cr
#' Predict on new data in `dt`, possibly using the stored `$state`. A transformed object must be returned
#' that can be converted to a `data.table` using [`as.data.table`]. `dt` does not need to be copied deliberately, it
#' is possible and encouraged to change it in-place. This method is called both during training and prediction phase,
#' and should essentially behave the same independently of phase.
#' (If this is incongruent with the functionality to be implemented, then it should inherit from
#' [`PipeOpTaskPreproc`], not from [`PipeOpTaskPreprocSimple`].) \cr
#' This method can optionally be overloaded when inheriting from [`PipeOpTaskPreprocSimple`], together with `private$.transform_dt()`
#' (and optionally `private$.select_cols()`, from [`PipeOpTaskPreproc`]); Alternatively, `private$.get_state()` (optional) and `private$.transform()`
#' can be overloaded.
#'
#' @family PipeOps
#' @family mlr3pipelines backend related
#' @template seealso_pipeopslist
#' @export
PipeOpTaskPreprocSimple = R6Class("PipeOpTaskPreprocSimple",
inherit = PipeOpTaskPreproc,
private = list(
.train_task = function(task) {
self$state = private$.get_state(task)
private$.transform(task)
},
.predict_task = function(task) private$.transform(task),
.get_state = function(task) {
dt_columns = private$.select_cols(task)
cols = dt_columns
if (!length(cols)) {
return(list(dt_columns = dt_columns))
}
dt = task$data(cols = cols)
if (test_r6(task, classes = "TaskSupervised")) {
c(private$.get_state_dt(dt, task$levels(cols), task$truth()), list(dt_columns = dt_columns))
} else {
c(private$.get_state_dt(dt, task$levels(cols)), list(dt_columns = dt_columns))
}
},
.transform = function(task) {
cols = self$state$dt_columns
if (!length(cols)) {
return(task)
}
dt = task$data(cols = cols)
dt = as.data.table(private$.transform_dt(dt, task$levels(cols)))
task$select(setdiff(task$feature_names, cols))$cbind(dt)
},
.get_state_dt = function(dt, levels, target) list(),
.transform_dt = function(dt, levels) stop("Abstract")
)
)