title | abstract | openreview | section | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quantum Kernelized Bandits |
We consider the quantum kernelized bandit problem, where the player observes information of rewards through quantum circuits termed the quantum reward oracle, and the mean reward function belongs to a reproducing kernel Hilbert space (RKHS). We propose a UCB-type algorithm that utilizes the quantum Monte Carlo (QMC) method and provide regret bounds in terms of the decay rate of eigenvalues of the Mercer operator of the kernel. Our algorithm achieves |
3GtCwa9nky |
Papers |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
hikima24a |
0 |
Quantum Kernelized Bandits |
1640 |
1657 |
1640-1657 |
1640 |
false |
Hikima, Yasunari and Murao, Kazunori and Takemori, Sho and Umeda, Yuhei |
|
2024-09-12 |
Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence |
244 |
inproceedings |
|