Skip to content

Latest commit

 

History

History
85 lines (68 loc) · 2.19 KB

README.md

File metadata and controls

85 lines (68 loc) · 2.19 KB

torch

Lifecycle: experimental Test CRAN status Discord

Installation

torch can be installed from CRAN with:

install.packages("torch")

You can also install the development version with:

remotes::install_github("mlverse/torch")

At the first package load additional software will be installed. See also the full installation guide here.

Examples

You can create torch tensors from R objects with the torch_tensor function and convert them back to R objects with as_array.

library(torch)
x <- array(runif(8), dim = c(2, 2, 2))
y <- torch_tensor(x, dtype = torch_float64())
y
#> torch_tensor
#> (1,.,.) = 
#>   0.6192  0.5800
#>   0.2488  0.3681
#> 
#> (2,.,.) = 
#>   0.0042  0.9206
#>   0.4388  0.5664
#> [ CPUDoubleType{2,2,2} ]
identical(x, as_array(y))
#> [1] TRUE

Simple Autograd Example

In the following snippet we let torch, using the autograd feature, calculate the derivatives:

x <- torch_tensor(1, requires_grad = TRUE)
w <- torch_tensor(2, requires_grad = TRUE)
b <- torch_tensor(3, requires_grad = TRUE)
y <- w * x + b
y$backward()
x$grad
#> torch_tensor
#>  2
#> [ CPUFloatType{1} ]
w$grad
#> torch_tensor
#>  1
#> [ CPUFloatType{1} ]
b$grad
#> torch_tensor
#>  1
#> [ CPUFloatType{1} ]

Contributing

No matter your current skills it’s possible to contribute to torch development. See the contributing guide for more information.